%matplotlib inline from IPython.html.widgets import interact, interactive from IPython.display import clear_output, display, HTML import numpy as np from scipy import integrate from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import cnames from matplotlib import animation def solve_lorenz(N=10, angle=0.0, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0): fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1], projection='3d') ax.axis('off') # prepare the axes limits ax.set_xlim((-25, 25)) ax.set_ylim((-35, 35)) ax.set_zlim((5, 55)) def lorenz_deriv((x, y, z), t0, sigma=sigma, beta=beta, rho=rho): """Compute the time-derivative of a Lorentz system.""" return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z] # Choose random starting points, uniformly distributed from -15 to 15 np.random.seed(1) x0 = -15 + 30 * np.random.random((N, 3)) # Solve for the trajectories t = np.linspace(0, max_time, int(250*max_time)) x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t) for x0i in x0]) # choose a different color for each trajectory colors = plt.cm.jet(np.linspace(0, 1, N)) for i in range(N): x, y, z = x_t[i,:,:].T lines = ax.plot(x, y, z, '-', c=colors[i]) plt.setp(lines, linewidth=2) ax.view_init(30, angle) plt.show() return t, x_t t, x_t = solve_lorenz(angle=0, N=10) w = interactive(solve_lorenz, angle=(0.,360.), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0)) display(w) t, x_t = w.result w.kwargs xyz_avg = x_t.mean(axis=1) xyz_avg.shape plt.hist(xyz_avg[:,0]) plt.title('Average $x(t)$') plt.hist(xyz_avg[:,1]) plt.title('Average $y(t)$')