from IPython.display import display from sympy.interactive import printing printing.init_printing(use_latex='mathjax') from __future__ import division import sympy as sym from sympy import * x, y, z = symbols("x y z") k, m, n = symbols("k m n", integer=True) f, g, h = map(Function, 'fgh') Rational(3,2)*pi + exp(I*x) / (x**2 + y) exp(I*x).subs(x,pi).evalf() e = x + 2*y srepr(e) exp(pi * sqrt(163)).evalf(50) eq = ((x+y)**2 * (x+1)) eq expand(eq) a = 1/x + (x*sin(x) - 1)/x a simplify(a) eq = Eq(x**3 + 2*x**2 + 4*x + 8, 0) eq solve(eq, x) a, b = symbols('a b') Sum(6*n**2 + 2**n, (n, a, b)) limit((sin(x)-x)/x**3, x, 0) (1/cos(x)).series(x, 0, 6) diff(cos(x**2)**2 / (1+x), x) integrate(x**2 * cos(x), (x, 0, pi/2)) eqn = Eq(Derivative(f(x),x,x) + 9*f(x), 1) display(eqn) dsolve(eqn, f(x)) %matplotlib inline import numpy as np import matplotlib.pyplot as plt # You can change the default figure size to be a bit larger if you want, # uncomment the next line for that: #plt.rc('figure', figsize=(10, 6)) def plot_taylor_approximations(func, x0=None, orders=(2, 4), xrange=(0,1), yrange=None, npts=200): """Plot the Taylor series approximations to a function at various orders. Parameters ---------- func : a sympy function x0 : float Origin of the Taylor series expansion. If not given, x0=xrange[0]. orders : list List of integers with the orders of Taylor series to show. Default is (2, 4). xrange : 2-tuple or array. Either an (xmin, xmax) tuple indicating the x range for the plot (default is (0, 1)), or the actual array of values to use. yrange : 2-tuple (ymin, ymax) tuple indicating the y range for the plot. If not given, the full range of values will be automatically used. npts : int Number of points to sample the x range with. Default is 200. """ if not callable(func): raise ValueError('func must be callable') if isinstance(xrange, (list, tuple)): x = np.linspace(float(xrange[0]), float(xrange[1]), npts) else: x = xrange if x0 is None: x0 = x[0] xs = sym.Symbol('x') # Make a numpy-callable form of the original function for plotting fx = func(xs) f = sym.lambdify(xs, fx, modules=['numpy']) # We could use latex(fx) instead of str(), but matploblib gets confused # with some of the (valid) latex constructs sympy emits. So we play it safe. plt.plot(x, f(x), label=str(fx), lw=2) # Build the Taylor approximations, plotting as we go apps = {} for order in orders: app = fx.series(xs, x0, n=order).removeO() apps[order] = app # Must be careful here: if the approximation is a constant, we can't # blindly use lambdify as it won't do the right thing. In that case, # evaluate the number as a float and fill the y array with that value. if isinstance(app, sym.numbers.Number): y = np.zeros_like(x) y.fill(app.evalf()) else: fa = sym.lambdify(xs, app, modules=['numpy']) y = fa(x) tex = sym.latex(app).replace('$', '') plt.plot(x, y, label=r'$n=%s:\, %s$' % (order, tex) ) # Plot refinements if yrange is not None: plt.ylim(*yrange) plt.grid() plt.legend(loc='best').get_frame().set_alpha(0.8) plot_taylor_approximations(sin, 0, [2, 4, 6], (0, 2*pi), (-2,2)) plot_taylor_approximations(cos, 0, [2, 4, 6], (0, 2*pi), (-2,2)) # For an expression made from elementary functions, we must first make it into # a callable function, the simplest way is to use the Python lambda construct. plot_taylor_approximations(lambda x: 1/cos(x), 0, [2,4,6], (0, 2*pi), (-5,5))