#!/usr/bin/env python # coding: utf-8 # Deep Learning with TensorFlow # ============= # # Credits: Forked from [TensorFlow](https://github.com/tensorflow/tensorflow) by Google # # Setup # ------------ # # Refer to the [setup instructions](https://github.com/donnemartin/data-science-ipython-notebooks/tree/feature/deep-learning/deep-learning/tensor-flow-exercises/README.md). # # Exercise 5 # ------------ # # The goal of this exercise is to train a skip-gram model over [Text8](http://mattmahoney.net/dc/textdata) data. # In[ ]: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. import collections import math import numpy as np import os import random import tensorflow as tf import urllib import zipfile from matplotlib import pylab from sklearn.manifold import TSNE # Download the data from the source website if necessary. # In[ ]: url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urllib.urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print 'Found and verified', filename else: print statinfo.st_size raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) # Read the data into a string. # In[ ]: def read_data(filename): f = zipfile.ZipFile(filename) for name in f.namelist(): return f.read(name).split() f.close() words = read_data(filename) print 'Data size', len(words) # Build the dictionary and replace rare words with UNK token. # In[ ]: vocabulary_size = 50000 def build_dataset(words): count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count = unk_count + 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words) print 'Most common words (+UNK)', count[:5] print 'Sample data', data[:10] del words # Hint to reduce memory. # Function to generate a training batch for the skip-gram model. # In[ ]: data_index = 0 def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size / num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [ skip_window ] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print batch[i], '->', labels[i, 0] print reverse_dictionary[batch[i]], '->', reverse_dictionary[labels[i, 0]] # Train a skip-gram model. # In[ ]: batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.array(random.sample(xrange(valid_window), valid_size)) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_dataset = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Variables. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) softmax_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) softmax_biases = tf.Variable(tf.zeros([vocabulary_size])) # Model. # Look up embeddings for inputs. embed = tf.nn.embedding_lookup(embeddings, train_dataset) # Compute the softmax loss, using a sample of the negative labels each time. loss = tf.reduce_mean( tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, embed, train_labels, num_sampled, vocabulary_size)) # Optimizer. optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss) # Compute the similarity between minibatch examples and all embeddings. # We use the cosine distance: norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings)) # In[ ]: num_steps = 100001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print "Initialized" average_loss = 0 for step in xrange(num_steps): batch_data, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_dataset : batch_data, train_labels : batch_labels} _, l = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += l if step % 2000 == 0: if step > 0: average_loss = average_loss / 2000 # The average loss is an estimate of the loss over the last 2000 batches. print "Average loss at step", step, ":", average_loss average_loss = 0 # note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k+1] log = "Nearest to %s:" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log = "%s %s," % (log, close_word) print log final_embeddings = normalized_embeddings.eval() # In[ ]: num_points = 400 tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points+1, :]) # In[ ]: def plot(embeddings, labels): assert embeddings.shape[0] >= len(labels), 'More labels than embeddings' pylab.figure(figsize=(15,15)) # in inches for i, label in enumerate(labels): x, y = embeddings[i,:] pylab.scatter(x, y) pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') pylab.show() words = [reverse_dictionary[i] for i in xrange(1, num_points+1)] plot(two_d_embeddings, words)