#!/usr/bin/env python # coding: utf-8 # # Table of Contents #

1  課題解答例
1.1  Gaussian(正規分布)へのフィット
# # 課題解答例 # # ## Gaussian(正規分布)へのフィット # # 正規分布で知られる，ガウス関数 # $$# f(x)= \frac{1}{\sqrt{2\pi\sigma}} # \exp \left(\frac{- (x-\mu)^2}{2\sigma^2} \right) #$$ # フィットをやってみましょう． # # 例えば，平均値($\mu$)が60点，偏差値($\sigma$)が15点として，ピークの人数が20人としましょう． # In[16]: import numpy as np import matplotlib.pyplot as plt def func(x, a1, a2, a3): return a1*np.exp(-(x-a2)**2/a3**2) ndata = 100 xdata = np.linspace(1, ndata, ndata) y = func(xdata, 20, 60, 15) ydata = y plt.plot(xdata, ydata, 'b-', label='data') popt, pcov = curve_fit(func, xdata, ydata) plt.plot(xdata, func(xdata, *popt), 'r-', label='fit') plt.show() # In[17]: from pprint import pprint import scipy.linalg as linalg def dfda1(x,a1,a2,a3): return np.exp(-(x - a2) ** 2 / a3 ** 2 / 2) def dfda2(x,a1,a2,a3): return a1 * (x - a2) / a3 ** 2 * np.exp(-(x - a2) ** 2 / a3 ** 2 / 2) def dfda3(x,a1,a2,a3): return a1 * (x - a2) ** 2 / a3 ** 3 * np.exp(-(x - a2) ** 2 / a3 ** 2 / 2) # In[18]: nparam = 3 guess1 = [10,50,10] # In[24]: df=np.zeros([ndata]) for i in range(0,ndata): dy = ydata[i]-func(xdata[i], *guess1) df[i]=dy #pprint(df) Jac=np.zeros([ndata,nparam]) for i in range(0,ndata): Jac[i,0] = dfda1(xdata[i], *guess1) Jac[i,1] = dfda2(xdata[i], *guess1) Jac[i,2] = dfda3(xdata[i], *guess1) # pprint(Jac) iJac = linalg.inv(np.dot(np.transpose(Jac),Jac)) # print(iJac) Jdf = np.dot(np.transpose(Jac),df) # pprint(Jdf) guess1 = guess1 + np.dot(iJac, Jdf) pprint(guess1) plt.plot(xdata, ydata, 'b-', label='data') popt, pcov = curve_fit(func, xdata, ydata) plt.plot(xdata, func(xdata, *guess1), 'r-', label='fit') plt.show() # In[ ]: