#!/usr/bin/env python # coding: utf-8 # # Nonlinear Schrödinger as a Dynamical System # # > #### [J. Colliander](http://colliand.com) ([UBC](http://www.math.ubc.ca)) # # #### [Ascona Winter School 2016](http://www.math.uzh.ch/pde16/index-Ascona2016.html), [(alternate link)](http://www.monteverita.org/en/90/default.aspx?idEvent=295&archive=) # ## Lectures # # 1. [Introduction](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture1.ipynb) # 2. [Conservation](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture2.ipynb) # 3. [Monotonicity](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture3.ipynb) # 4. **[Research Frontier](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture4.ipynb)** # # # # ### https://github.com/colliand/ascona2016 # # # *** # ## Overview of Lecture 4 # # * Review of the main issue: understand the dynamics. # * Critical Scattering Conjecture? # * Robust Methods for Global Well-posedness? # * Partial Regularity? # * High Regularity Globalizing Estimates? # # Initial Value Problem for NLS # # $$ # \begin{equation*} # \tag{$NLS^{\pm}_p (\Omega)$} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u = \pm |u|^{p-1} u \\ # u(0,x) = u_0 (x), ~ x \in \Omega. # \end{matrix} # \right. # \end{equation*} # $$ # ## What happens? # ## Dilation Invariance # # One solution $u$ generates parametrized family $\{u^\lambda\}_{\lambda > 0}$ of solutions: # # $$u:[0,T) \times \mathbb{R}^d_x \rightarrow \mathbb{C} ~{\mbox{solves}}~ NLS_p^{\pm}(\mathbb{R}^d)$$ # # $${\iff}$$ # # $$u^\lambda: [0,\lambda^2 T )\times \mathbb{R}^d_x \rightarrow \mathbb{C} ~{\mbox{solves}}~ NLS_p^{\pm}(\mathbb{R}^d)$$ # where # $$ # u^\lambda (\tau, y) = \lambda^{-2/(p-1)} u( \lambda^{-2} \tau, \lambda^{-1} y). # $$ # ## Critical Regularity Regimes # # # # | critical Sobolev index | Regime | # |:---------------:|:-------------------------------:| # | $ s_c < 0$ | mass subcritical | # | $0 < s_c < 1$ | mass super/energy subcritical | # | $s_c = 1$ | energy critical | # | $1 < s_c < \frac{d}{2}$| energy supercritical | # # Critical Scattering Conjecture? # # # $ H^{s_c} ({\mathbb{R}}^d) \ni u_0 \longmapsto u$ solves defocusing $NLS_p^{\pm}(\mathbb{R}^d)$ globally in time with globally bounded spacetime Strichartz size. # # # $ \implies $ the behavior of $u(t)$ is described by associated linear evolutions as $ t \rightarrow \pm \infty$. # ## Status of Critical Scattering? # * Energy Critical ($s_c = 1$): $\checkmark$ # * Mass Critical ($s_c = 0$): $\checkmark$ # * $0 < s_c < 1$: OPEN # * Energy Supercritical ($s_c > 1$): OPEN # ## Remarks # # * Conditional results under critical norm bounds # $$\sup_t \| u(t) \|_{H^{s_c}} < \infty.$$ # * Interesting analogies with global issue for Navier-Stokes. # * Corresponding problems for NLW might be resolved first. # * $H^{1/2}$-Critical seems most tractable, e.g. $NLS_3^+ ({\mathbb{R}}^3)$. # ## Robust GWP Methods down to $s_c + \epsilon$? # ## Local to Global via Almost Conservation # # The almost conservation property # $$ \sup_{t \in [0,T_{lwp}]} \widetilde{E} [I u(t)] \leq \widetilde{E}[Iu_0] + N^{-\alpha}$$ # led to GWP for # $$ # s > s_\alpha = \frac{2}{2+\alpha}. # $$ # ## Better Bootstraps? # # * Bootstrap arguments using Morawetz control generated improvements. # * Precise bootstraps with Raphaël led to results for $s > s_c$. # * **Q:** Could improved bootstraps lead to robust method to prove global regularity for $s>s_c$? # # > Addendum from discussion after the talk! See [recent work](http://arxiv.org/pdf/1506.06239.pdf) by Ben Dodson on NLW. Recently, Dodson announced corresponding results for $NLS_3^+ (\mathbb{R}^3)$. # # Partial Regularity? # ![ckn](https://wwejubwfy.s3.amazonaws.com/1982_Caffarelli_Partial_regularity_of_suitable_weak_Comm._Pure_Appl._Math.pdf-2016-01-14-21-18-08.jpg) # # ## Notations for $NLS_p^+ (\mathbb{R}^d)$. # # $$ # u_\lambda (t,x) = [\frac{1}{\lambda}]^{\frac{2}{p-1}} u(\frac{t}{\lambda^2}, \frac{x}{\lambda}). # $$ # Exponents appearing in dilation invariant spaces used in the study of $NLS_p$: # $$ s_c = \frac{d}{2} - \frac{2}{p-1}, ~\mbox{(Scaling invariant Sobolev index)} $$ # $$ \frac{2}{q} + \frac{d}{r} = \frac{2}{p-1}, ~(H^{s_c} ~\mbox{admissible Strichartz pairs} ~(q,r))$$ # $$ \frac{d}{p_c} = \frac{2}{p-1}, ~\mbox{(Scaling invariant spatial Lebesgue space exponent)}$$ # $$ \frac{2+d}{q_c} = \frac{2}{p-1}, ~\mbox{(Diagonal scaling invariant Strichartz exponent)}.$$ # ## The Singular Set # * Spacetime point $z_0 = (t_0, x_0) \in \mathbb{R} \times {\mathbb{R}}^d.$ # * $Q_\lambda$ denote the parabolic box of scale $\lambda$ behind $z_0$ # $$ # \{(t,x) \in \mathbb{R}^{1+d}: 0< t_0 - t < \lambda^2, |x - x_0| < \lambda\}. # $$ # # # **Definition:** A spacetime point $z_0$ is called a **singular point** for a weak solution $u$ of $NLS_p$ if # $$ # \lim_{\lambda \searrow 0} \int_{Q_\lambda} |u|^{q_c} dx dt = + \infty. # $$ # Points which are not singular are called **regular** points. The set of all singular points is denoted $\Sigma$. # The diagonal Strichartz norm diverges on all parabolic boxes behind a singular point. Points which are not singular are called **regular points** for $u$. # # ## Concentration Statement? # **Singular Point $\implies$ Consistent $L^{q_c}_{t,x}$ Concentration:** # If $z_0$ is a singular point for the weak solution $u$ then $z_0$ is also a point of (scaling consistent) concentration. That is, there exists $\epsilon_0 > 0$ (a constant independent of $z_0$) and a sequence of scales $\lambda_j \searrow 0$ satisfying # $$ # \int_{Q_{\lambda_j}} |P_{< \frac{1}{\lambda_j}} u|^{q_c} dx dt > \epsilon_0. # $$ # # # The converse would be an "$\epsilon$-regularity" statement. # ## Parabolic Hausdorff Dimension of $\Sigma$? # # Absorption of Interaction Morawetz $\implies {\mbox{dim}}_{\mathscr{P}} \Sigma \leq 4 (s_c - \frac{1}{4})$ # ## High Regularity Globalizing Estimates? # # # Consider the $H^2$-critical problem # $$ # \begin{equation*} # \tag{$NLS^{\pm}_5 (\mathbb{R}^5)$} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u = \pm |u|^{4} u \\ # u(0,x) = u_0 (x), ~ x \in \mathbb{R}^5. # \end{matrix} # \right. # \end{equation*} # $$ # # Assume $u_0$ is nice (smooth, compactly supported). Can one prove that # $$ # \sup_t \| u(t) \|_{H^k (\mathbb{R}^5)} < \infty? # $$ # Possible ingredients: Almost conservation techniques, a priori spacetime estimates, Gronwall estimate, contradiction arguments, ...? # # Thank you! # # ![alpenglow](https://wwejubwfy.s3.amazonaws.com/friday-morning-ascona.jpg) #