#!/usr/bin/env python # coding: utf-8 # # Nonlinear Schrödinger as a Dynamical System # # > #### [J. Colliander](http://colliand.com) ([UBC](http://www.math.ubc.ca)) # # #### [Ascona Winter School 2016](http://www.math.uzh.ch/pde16/index-Ascona2016.html), [(alternate link)](http://www.monteverita.org/en/90/default.aspx?idEvent=295&archive=) # # # ## Lectures # # 1. **[Introduction](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture1.ipynb)** # 2. [Conservation](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture2.ipynb) # 3. [Monotonicity](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture3.ipynb) # 4. [Research Frontier](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture4.ipynb) # # # ### https://github.com/colliand/ascona2016 # # *** # ## Overview of Lecture 1 # # * Initial Value Problem for NLS # * Conserved Quantities # * Well-posedness Theory # # Initial Value Problem for NLS # # Initial Value Problem for NLS # # $$ # \begin{equation*} # \tag{$NLS^{\pm}_p (\Omega)$} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u = \pm |u|^{p-1} u \\ # u(0,x) = u_0 (x), ~ x \in \Omega. # \end{matrix} # \right. # \end{equation*} # $$ # ## Studies explore interplay between: # # * Dispersion # * Nonlinearity # Dilation invariance quantifies the balance between these effects. # ## Dilation Invariance # # One solution $u$ generates parametrized family $\{u^\lambda\}_{\lambda > 0}$ of solutions: # # $$u:[0,T) \times \mathbb{R}^d_x \rightarrow \mathbb{C} ~{\mbox{solves}}~ NLS_p^{\pm}(\mathbb{R}^d)$$ # # $${\iff}$$ # # $$u^\lambda: [0,\lambda^2 T )\times \mathbb{R}^d_x \rightarrow \mathbb{C} ~{\mbox{solves}}~ NLS_p^{\pm}(\mathbb{R}^d)$$ # where # $$ # u^\lambda (\tau, y) = \lambda^{-2/(p-1)} u( \lambda^{-2} \tau, \lambda^{-1} y). # $$ # # Norms which are invariant under $u \longmapsto u_\lambda$ are **critical**. # ## Critical Regularity # # # In the $L^2$-based Sobolev scale, # $$ # \| D^s u^\lambda (t) \|_{L^2} = \lambda^{-\frac{2}{p-1} - s + \frac{d}{2}} \| D^s u (t)\|_{L^2}. # $$ # # # # The **critical Sobolev index** for $NLS_p^{\pm}(\mathbb{R}^d)$ is # $$ # s_c := \frac{d}{2} - \frac{2}{p-1}. # $$ # # # # # | critical Sobolev index | Regime | # |:---------------:|:-------------------------------:| # | $ s_c < 0$ | mass subcritical | # | $0 < s_c < 1$ | mass super/energy subcritical | # | $s_c = 1$ | energy critical | # | $1 < s_c < \frac{d}{2}$| energy supercritical | # # # # # # ### The spatial domain $\Omega$? # # # * Infinite measure space like $\mathbb{R}^d$ # * Finite measure space like $\mathbb{T}^d$ # ### The Choice of Sign? # # * $+$ **defocusing** # * $-$ **focusing** # # Large data dynamics are completely different. # > [numerical simulations of $NLS_5^+ (\mathbb{R}^5)$](https://wwejubwfy.s3.amazonaws.com/chirped-data-NLS5R5-simulation.pdf) # # Conserved Quantities # # # # Conserved Quantities # # $$ # \begin{align*} # {\mbox{Mass}}& = \| u \|_{L^2_x}^2 = \int_{\mathbb{R}^d} |u(t,x)|^2 dx. \\ # {\mbox{Momentum}}& = {\textbf{p}}(u) = 2 \Im \int_{\mathbb{R}^2} {\overline{u}(t)} \nabla u (t) # dx. \\ # {\mbox{Energy}} & = H[u(t)] = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u(t) |^2 dx {\pm} \frac{2}{p+1} |u(t)|^{p+1} dx . # \end{align*} # $$ # # ## Remarks # # * Conserved quantities constrain the dynamics. # * NLS defines a flow on a sphere in $L^2$. # * Energy vividly reveals **focusing vs. defocusing** difference. # * Mass is $L^2$; Momentum scales like $H^{1/2}$; Energy involves $H^1$. # * Local conservation laws express **how** a quantity is # conserved: # $\partial_t |u|^2= \nabla \cdot 2 \Im (\overline{u} # \nabla u)$. # # Variations on Conserved Quantities? # ## Conserved ## # $$ \partial_t Q[u] = 0.$$ # * Energy/Compactness methods for building solutions. # * Globalizing control to extend local-in-time solutions. # # ## Almost Conserved## # $$\big| \partial_t Q[u] \big| ~\mbox{is small}.$$ # # # * Bourgain's High/Low Frequency Decomposition # * $I$-Method # * Multilinear Correction Terms # * Applications # ## Monotone ## # $$\partial_t Q[u] > 0.$$ # * Virital identity $\implies$ blow-up. # * Morawetz-type inequalities $\implies$ decay. # # Well-posedness Theory # # Local Well-posedness Theory # # * Fixed point argument based on Contraction Mapping # * Show the "Picard iterates" converge # * Key innovation for the analysis: identify the right space! # # Free Schrödinger Evolution # $$ # \begin{equation*} # \tag{$LS(\mathbb{R}^d)$} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u = 0 \\ # u(0,x) = u_0 (x). # \end{matrix} # \right. # \end{equation*} # $$ # ## Explicit Solution Formula # # $$ u_0 \longmapsto u(t,x) = e^{it \Delta} u_0$$ # ## Explicit Solution Formula # # # * Fourier Multiplier Representation: # $$ # e^{it \Delta} u_0 (x) = c_\pi\int_{\mathbb{R}^d} e^{i x \cdot \xi} e^{-i t |\xi|^2} # \widehat{u_0} (\xi) d\xi. # $$ # * Convolution Representation: # $$ # e^{it \Delta} u_0 (x) = k_\pi \frac{1}{(it)^{d/2}} \int_{\mathbb{R}^d} e^{i # \frac{|x-y|^2}{4t}} u_0 (y) dy. # $$ # ## Estimates for Schrödinger Propagator $e^{it \Delta} u_0$ # * Fourier Multiplier Representation $\implies$ Unitary in $H^s$: # $$ # \| D_x^s e^{it \Delta} u_0 \|_{L^2_x} = \| D_x^s u_0 \|_{L^2_x}. # $$ # * Convolution Representation $\implies$ Dispersive estimate: # $$ # \| e^{it \Delta} u_0 \|_{L^\infty_x} \leq \frac{C}{t^{d/2}} \| u_0 \|_{L^1_x}. # $$ # * Spacetime estimates? **Strichartz estimates** hold, for example, # $$ # \| e^{it \Delta} u_0 \|_{L^4 ( \mathbb{R}_t \times \mathbb{R}^2_x)} \leq C # \| u_0 \|_{L^2 (\mathbb{R}^2_x)}. # $$ # # Schrödinger Evolution with Forcing # $$ # \begin{equation*} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u = F \\ # u(0,x) = u_0 (x). # \end{matrix} # \right. # \end{equation*} # $$ # ### Strichartz Estimates # # $$ \| u \|_{L^q_t L^r_x (\mathbb{R}_t \times \mathbb{R}^d_x )} \leq C \| u_0 \|_{L^2_x} # + \| F \|_{L^{Q'}_t L^{R'}_x(\mathbb{R}_t \times \mathbb{R}^d_x )}. # $$ # *** # # Admissibility for *independent* pairs $(q,r), (Q,R)$ # $$ # \frac{2}{q} + \frac{d}{r} = \frac{d}{2}, ~ q > 2. # $$ # The $'$ denotes Hölder dual exponent. # # Local-in-time theory for $NLS^{\pm}_3 (\mathbb{R}^2)$ # * $\forall ~u_0 \in L^2 (\mathbb{R}^2)~\exists ~T_{lwp} ( u_0 ) $ determined by # $$ # \| e^{it \Delta} u_0 \|_{L^4_{tx} ([0,T_{lwp} ] \times \mathbb{R}^2)} < # \frac{1}{100} ~{\mbox{such that}}~ # $$ # # $\exists$ unique $u \in C([0, T_{lwp} ]; L^2 ) \cap L^4_{tx} ([0,T_{lwp}] \times \mathbb{R}^2)$ solving $NLS_3^{+} (\mathbb{R}^2)$. # # * $\forall ~ u_0 \in H^s (\mathbb{R}^2), s>0$, $T_{lwp} \thicksim \| u_0 \|_{H^s}^{-\frac{2}{s}}$ and regularity persists: $u \in C([0,T_{lwp}]; H^s (\mathbb{R}^2))$. # * Define the **maximal forward existence time** $T^* (u_0)$ by # $$ # \| u \|_{L^4_{tx} ([0,T^* -\delta] \times \mathbb{R}^2) }< \infty # $$ # for all $\delta > 0$ but diverges to $\infty$ as $\delta \searrow 0$. # * $\exists ~$ **small data scattering threshold** $\mu_0 > 0$ # $$ # \| u_0 \|_{L^2} < \mu_0 \implies \|u \|_{L^4_{tx} (\mathbb{R} \times \mathbb{R}^2)} < 2 \mu_0. # $$ # # $H^1$ Global-in-time theory for $NLS^{+}_3 (\mathbb{R}^2)$ # # * $\forall ~ u_0 \in H^1 (\mathbb{R}^2), s>0$, $T_{lwp} \thicksim \| u_0 \|_{H^1}^{-2}$ and regularity persists: $u \in C([0,T_{lwp}]; H^1 (\mathbb{R}^2))$. # * Conserved Quantities $\implies ~T_{lwp} > C(u_0)$ # $$ # {\mbox{Energy}} = H[u(t)] = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u(t) |^2 dx + \frac{2}{p+1} |u(t)|^{p+1} # $$ # $$ # {\mbox{Mass}} = \| u \|_{L^2_x}^2 = \int_{\mathbb{R}^d} |u(t,x)|^2 dx # $$ # * Globalize by iteration using $ ~T_{lwp} > C(u_0)$. #