#!/usr/bin/env python # coding: utf-8 # In[1]: # PCA import numpy as np import matplotlib.pyplot as plt import pandas as pd get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: # Veri Seti url='https://raw.githubusercontent.com/cagriemreakin/Machine-Learning/master/4%20-%20Dimensionality%20Reduction/1%20-%20Principal%20Component%20Analysis/Wine.csv' dataset = pd.read_csv(url) X = dataset.iloc[:, 0:13].values y = dataset.iloc[:, 13].values # Boyut Sayısı size=X.shape[1] # In[3]: # Eğitim ve Test Set Görselleştirme için Kullanılacak def visualize(X,y,title): from matplotlib.colors import ListedColormap plt.figure(figsize=(12,7)) X_set, y_set = X, y X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green', 'blue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green', 'blue'))(i), label = j) plt.title('Logistic Regression ' + title) plt.xlabel('PC1') plt.ylabel('PC2') plt.legend() plt.show() # In[4]: # Eğitim ve Test Setine Ayırma from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # In[5]: # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # In[6]: #Component sayısına karar verebilmek için n_components' a parametre olarak None değerini atıyoruz. #Böylece veri setimizdeki explained variance ve cumulative variance değerlerini bulup grafikte gösteriyoruz. from sklearn.decomposition import PCA pca = PCA(n_components = None) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) explained_variance = pca.explained_variance_ratio_ cumVar = np.cumsum(np.round(explained_variance, decimals=4)*100) # In[7]: # Component Sayısına Göre Değişen Explained ve Cumulative Variance Değerini Grafik Üzerinde Gösterme plt.figure(figsize=(10, 5)) # 100 Üzerinden Explained Variance Değerlerinin Bar ile Gösterimi plt.bar(range(1,explained_variance.size+1,1), explained_variance*100, align='center', label='Variance', color = 'b') # 100 Üzerinden Cumulative Variance Değerlerinin Step ile Gösterimi plt.step(range(1,explained_variance.size+1,1), cumVar, where='mid',label='Cumulative Variance',color='red') plt.title(' Explained Variance & Cumulative Variance') plt.ylabel('Explained Variance') plt.xlabel('Principal components') plt.legend(loc='best') plt.show() # Yukarıdaki grafikte 2 component ile toplam variance'ın %60' ı açıklanabilir. 2 boyutlu düzlemde sonuçları göstereceğimiz için 2 seçtik. Fakat araştırmalar, toplam variance'ın en az %70-80 arasında olması gerektiğini söylüyor. # In[8]: def pca (X_train,X_test,componentNumber): pca2 = PCA(n_components=componentNumber) X_train_pca = pca2.fit_transform(X_train) X_test_pca = pca2.transform(X_test) return (X_train_pca,X_test_pca) # In[9]: # Logistic Regression Modeli ile Veri Setini Eğitme from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) X_train_pca,X_test_pca = pca (X_train,X_test,2) classifier.fit(X_train_pca, y_train) # In[10]: classifier2 = LogisticRegression(random_state = 0) X_train_pca2,X_test_pca2 = pca (X_train,X_test,3) classifier2.fit(X_train_pca2, y_train) # In[11]: # Sonuçların Tahmini y_pred = classifier.predict(X_test_pca) y_pred2 = classifier2.predict(X_test_pca2) # In[12]: # Confusion Matrix from sklearn.metrics import confusion_matrix cm1 = confusion_matrix(y_test, y_pred) cm2 = confusion_matrix(y_test, y_pred2) # In[13]: print("\n Confusion Matrix for 2 Component\n",cm1,"\n\n Confusion Matrix for 3 Component\n",cm2) # In[14]: from sklearn.metrics import accuracy_score print("n_components = 2 -> Prediciton: %",accuracy_score(y_pred,y_test)*100) print("n_components = 3 -> Prediction: %",accuracy_score(y_pred2,y_test)*100) # In[15]: visualize(X_train_pca,y_train,'Training Set for 2 Components') visualize(X_test_pca,y_test,'Test Set for 2 Components')