#!/usr/bin/env python # coding: utf-8 # # 401 CNN # # View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/ # My Youtube Channel: https://www.youtube.com/user/MorvanZhou # # Dependencies: # * torch: 0.1.11 # * torchvision # * matplotlib # In[1]: import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: torch.manual_seed(1) # reproducible # In[3]: # Hyper Parameters EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch BATCH_SIZE = 50 LR = 0.001 # learning rate DOWNLOAD_MNIST = True # set to False if you have downloaded # In[4]: # Mnist digits dataset train_data = torchvision.datasets.MNIST( root='./mnist/', train=True, # this is training data transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0] download=DOWNLOAD_MNIST, # download it if you don't have it ) # In[5]: # plot one example print(train_data.train_data.size()) # (60000, 28, 28) print(train_data.train_labels.size()) # (60000) plt.imshow(train_data.train_data[0].numpy(), cmap='gray') plt.title('%i' % train_data.train_labels[0]) plt.show() # In[6]: # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28) train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # In[21]: # convert test data into Variable, pick 2000 samples to speed up testing test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1)).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1) test_y = test_data.test_labels[:2000] # In[8]: class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( # input shape (1, 28, 28) nn.Conv2d( in_channels=1, # input height out_channels=16, # n_filters kernel_size=5, # filter size stride=1, # filter movement/step padding=2, # if want same width and length of this image after con2d, padding=(kernel_size-1)/2 if stride=1 ), # output shape (16, 28, 28) nn.ReLU(), # activation nn.MaxPool2d(kernel_size=2), # choose max value in 2x2 area, output shape (16, 14, 14) ) self.conv2 = nn.Sequential( # input shape (1, 28, 28) nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14) nn.ReLU(), # activation nn.MaxPool2d(2), # output shape (32, 7, 7) ) self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7) output = self.out(x) return output, x # return x for visualization # In[9]: cnn = CNN() print(cnn) # net architecture # In[10]: optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # In[12]: # following function (plot_with_labels) is for visualization, can be ignored if not interested from matplotlib import cm try: from sklearn.manifold import TSNE; HAS_SK = True except: HAS_SK = False; print('Please install sklearn for layer visualization') def plot_with_labels(lowDWeights, labels): plt.cla() X, Y = lowDWeights[:, 0], lowDWeights[:, 1] for x, y, s in zip(X, Y, labels): c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9) plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01) plt.ion() # training and testing for epoch in range(EPOCH): for step, (x, y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader b_x = Variable(x) # batch x b_y = Variable(y) # batch y output = cnn(b_x)[0] # cnn output loss = loss_func(output, b_y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if step % 100 == 0: test_output, last_layer = cnn(test_x) pred_y = torch.max(test_output, 1)[1].data.squeeze() accuracy = sum(pred_y == test_y) / float(test_y.size(0)) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy) if HAS_SK: # Visualization of trained flatten layer (T-SNE) tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = 500 low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :]) labels = test_y.numpy()[:plot_only] plot_with_labels(low_dim_embs, labels) plt.ioff() # In[36]: # print 10 predictions from test data test_output, _ = cnn(test_x[:10]) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() print(pred_y, 'prediction number') print(test_y[:10].numpy(), 'real number') # In[ ]: