#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # # # OT mapping estimation for domain adaptation # # # This example presents how to use MappingTransport to estimate at the same # time both the coupling transport and approximate the transport map with either # a linear or a kernelized mapping as introduced in [8]. # # [8] M. Perrot, N. Courty, R. Flamary, A. Habrard, # "Mapping estimation for discrete optimal transport", # Neural Information Processing Systems (NIPS), 2016. # # # In[2]: # Authors: Remi Flamary # Stanislas Chambon # # License: MIT License import numpy as np import matplotlib.pylab as pl import ot # Generate data # ------------- # # # In[3]: n_source_samples = 100 n_target_samples = 100 theta = 2 * np.pi / 20 noise_level = 0.1 Xs, ys = ot.datasets.make_data_classif( 'gaussrot', n_source_samples, nz=noise_level) Xs_new, _ = ot.datasets.make_data_classif( 'gaussrot', n_source_samples, nz=noise_level) Xt, yt = ot.datasets.make_data_classif( 'gaussrot', n_target_samples, theta=theta, nz=noise_level) # one of the target mode changes its variance (no linear mapping) Xt[yt == 2] *= 3 Xt = Xt + 4 # Plot data # --------- # # # In[4]: pl.figure(1, (10, 5)) pl.clf() pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') pl.legend(loc=0) pl.title('Source and target distributions') # Instantiate the different transport algorithms and fit them # ----------------------------------------------------------- # # # In[5]: # MappingTransport with linear kernel ot_mapping_linear = ot.da.MappingTransport( kernel="linear", mu=1e0, eta=1e-8, bias=True, max_iter=20, verbose=True) ot_mapping_linear.fit(Xs=Xs, Xt=Xt) # for original source samples, transform applies barycentric mapping transp_Xs_linear = ot_mapping_linear.transform(Xs=Xs) # for out of source samples, transform applies the linear mapping transp_Xs_linear_new = ot_mapping_linear.transform(Xs=Xs_new) # MappingTransport with gaussian kernel ot_mapping_gaussian = ot.da.MappingTransport( kernel="gaussian", eta=1e-5, mu=1e-1, bias=True, sigma=1, max_iter=10, verbose=True) ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt) # for original source samples, transform applies barycentric mapping transp_Xs_gaussian = ot_mapping_gaussian.transform(Xs=Xs) # for out of source samples, transform applies the gaussian mapping transp_Xs_gaussian_new = ot_mapping_gaussian.transform(Xs=Xs_new) # Plot transported samples # ------------------------ # # # In[6]: pl.figure(2) pl.clf() pl.subplot(2, 2, 1) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=.2) pl.scatter(transp_Xs_linear[:, 0], transp_Xs_linear[:, 1], c=ys, marker='+', label='Mapped source samples') pl.title("Bary. mapping (linear)") pl.legend(loc=0) pl.subplot(2, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=.2) pl.scatter(transp_Xs_linear_new[:, 0], transp_Xs_linear_new[:, 1], c=ys, marker='+', label='Learned mapping') pl.title("Estim. mapping (linear)") pl.subplot(2, 2, 3) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=.2) pl.scatter(transp_Xs_gaussian[:, 0], transp_Xs_gaussian[:, 1], c=ys, marker='+', label='barycentric mapping') pl.title("Bary. mapping (kernel)") pl.subplot(2, 2, 4) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=.2) pl.scatter(transp_Xs_gaussian_new[:, 0], transp_Xs_gaussian_new[:, 1], c=ys, marker='+', label='Learned mapping') pl.title("Estim. mapping (kernel)") pl.tight_layout() pl.show()