#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # # # Convolutional Wasserstein Barycenter example # # # This example is designed to illustrate how the Convolutional Wasserstein Barycenter # function of POT works. # # # In[2]: # Author: Nicolas Courty # # License: MIT License import numpy as np import pylab as pl import ot # Data preparation # ---------------- # # The four distributions are constructed from 4 simple images # # # In[3]: f1 = 1 - pl.imread('../data/redcross.png')[:, :, 2] f2 = 1 - pl.imread('../data/duck.png')[:, :, 2] f3 = 1 - pl.imread('../data/heart.png')[:, :, 2] f4 = 1 - pl.imread('../data/tooth.png')[:, :, 2] A = [] f1 = f1 / np.sum(f1) f2 = f2 / np.sum(f2) f3 = f3 / np.sum(f3) f4 = f4 / np.sum(f4) A.append(f1) A.append(f2) A.append(f3) A.append(f4) A = np.array(A) nb_images = 5 # those are the four corners coordinates that will be interpolated by bilinear # interpolation v1 = np.array((1, 0, 0, 0)) v2 = np.array((0, 1, 0, 0)) v3 = np.array((0, 0, 1, 0)) v4 = np.array((0, 0, 0, 1)) # Barycenter computation and visualization # ---------------------------------------- # # # # In[4]: pl.figure(figsize=(10, 10)) pl.title('Convolutional Wasserstein Barycenters in POT') cm = 'Blues' # regularization parameter reg = 0.004 for i in range(nb_images): for j in range(nb_images): pl.subplot(nb_images, nb_images, i * nb_images + j + 1) tx = float(i) / (nb_images - 1) ty = float(j) / (nb_images - 1) # weights are constructed by bilinear interpolation tmp1 = (1 - tx) * v1 + tx * v2 tmp2 = (1 - tx) * v3 + tx * v4 weights = (1 - ty) * tmp1 + ty * tmp2 if i == 0 and j == 0: pl.imshow(f1, cmap=cm) pl.axis('off') elif i == 0 and j == (nb_images - 1): pl.imshow(f3, cmap=cm) pl.axis('off') elif i == (nb_images - 1) and j == 0: pl.imshow(f2, cmap=cm) pl.axis('off') elif i == (nb_images - 1) and j == (nb_images - 1): pl.imshow(f4, cmap=cm) pl.axis('off') else: # call to barycenter computation pl.imshow(ot.bregman.convolutional_barycenter2d(A, reg, weights), cmap=cm) pl.axis('off') pl.show()