using DFTK using LinearAlgebra using ForwardDiff # Construct PlaneWaveBasis given a particular electric field strength # Again we take the example of a Helium atom. function make_basis(ε::T; a=10., Ecut=30) where T lattice=T(a) * I(3) # lattice is a cube of ``a`` Bohrs He = ElementPsp(:He, psp=load_psp("hgh/lda/He-q2")) atoms = [He => [[1/2; 1/2; 1/2]]] # Helium at the center of the box model = model_DFT(lattice, atoms, [:lda_x, :lda_c_vwn]; extra_terms=[ExternalFromReal(r -> -ε * (r[1] - a/2))], symmetries=false) PlaneWaveBasis(model; Ecut, kgrid=[1, 1, 1]) # No k-point sampling on isolated system end # dipole moment of a given density (assuming the current geometry) function dipole(basis, ρ) @assert isdiag(basis.model.lattice) a = basis.model.lattice[1, 1] rr = [a * (r[1] - 1/2) for r in r_vectors(basis)] sum(rr .* ρ) * basis.dvol end # Function to compute the dipole for a given field strength function compute_dipole(ε; tol=1e-8, kwargs...) scfres = self_consistent_field(make_basis(ε; kwargs...), tol=tol) dipole(scfres.basis, scfres.ρ) end; polarizability_fd = let ε = 0.01 (compute_dipole(ε) - compute_dipole(0.0)) / ε end function self_consistent_field_dual(basis::PlaneWaveBasis, basis_dual::PlaneWaveBasis{T}; kwargs...) where T <: ForwardDiff.Dual scfres = self_consistent_field(basis; kwargs...) ψ, occupation = DFTK.select_occupied_orbitals(basis, scfres.ψ, scfres.occupation) # promote everything eagerly to Dual numbers occupation_dual = [T.(occupation[1])] ψ_dual = [Complex.(T.(real(ψ[1])), T.(imag(ψ[1])))] ρ_dual = compute_density(basis_dual, ψ_dual, occupation_dual) _, δH = energy_hamiltonian(basis_dual, ψ_dual, occupation_dual; ρ=ρ_dual) δHψ = δH * ψ_dual δHψ = [ForwardDiff.partials.(δHψ[1], 1)] δψ = DFTK.solve_ΩplusK(basis, ψ, -δHψ, occupation) δρ = DFTK.compute_δρ(basis, ψ, δψ, occupation) ρ = ForwardDiff.value.(ρ_dual) ψ, ρ, δψ, δρ end; function compute_dipole(ε::ForwardDiff.Dual; tol=1e-8, kwargs...) T = ForwardDiff.tagtype(ε) basis = make_basis(ForwardDiff.value(ε); kwargs...) basis_dual = make_basis(ε; kwargs...) ψ, ρ, δψ, δρ = self_consistent_field_dual(basis, basis_dual; tol) ρ_dual = ForwardDiff.Dual{T}.(ρ, δρ) dipole(basis_dual, ρ_dual) end; polarizability = ForwardDiff.derivative(compute_dipole, 0.0) println() println("Polarizability via ForwardDiff: $polarizability") println("Polarizability via finite difference: $polarizability_fd")