using DFTK, LinearAlgebra a = 10.26 lattice = a / 2 * [[0 1 1.]; [1 0 1.]; [1 1 0.]] Si = ElementPsp(:Si, psp=load_psp("hgh/lda/Si-q4")) atoms = [Si => [ones(3)/8, -ones(3)/8]] # We take very (very) crude parameters model = model_LDA(lattice, atoms) kgrid = [1, 1, 1] Ecut = 5 basis = PlaneWaveBasis(model, Ecut; kgrid=kgrid); function my_fp_solver(f, x0, max_iter; tol) mixing_factor = .7 x = x0 fx = f(x) for n = 1:max_iter inc = fx - x if norm(inc) < tol break end x = x + mixing_factor * inc fx = f(x) end (fixpoint=x, converged=norm(fx-x) < tol) end; function my_eig_solver(A, X0; maxiter, tol, kwargs...) n = size(X0, 2) A = Array(A) E = eigen(A) λ = E.values[1:n] X = E.vectors[:, 1:n] (λ=λ, X=X, residual_norms=[], iterations=0, converged=true, n_matvec=0) end; struct MyMixing α # Damping parameter end MyMixing() = MyMixing(0.7) function DFTK.mix(mixing::MyMixing, basis, δF::RealFourierArray, δF_spin=nothing; n_iter, kwargs...) if n_iter <= 2 # Just do simple mixing on total density and spin density (if it exists) (mixing.α * δF, isnothing(δF_spin) ? nothing : mixing.α * δF_spin) else # Use the KerkerMixing from DFTK DFTK.mix(KerkerMixing(α=mixing.α), basis, δF, δF_spin; kwargs...) end end scfres = self_consistent_field(basis; tol=1e-8, solver=my_fp_solver, eigensolver=my_eig_solver, mixing=MyMixing());