#!/usr/bin/env python # coding: utf-8 #

Frequency Response to Harmonic Direct-Force Inputs

#

MCHE 485: Mechanical Vibrations

#

Dr. Joshua Vaughan
# joshua.vaughan@louisiana.edu
# http://www.ucs.louisiana.edu/~jev9637/

#

# A Mass-Spring-Damper System
# Figure 1: A Mass-Spring-Damper System #

# # This notebook examines the frequency response of a mass-spring-damper system like the one shown in Figure 1 to a harmonic, direct-force input. # # The equation of motion for the system is: # # # $ \quad m \ddot{x} + c \dot{x} + kx = f $ # # We could also write this equation in terms of the damping ratio, $\zeta$, and natural frequency, $\omega_n$. # # $ \quad \ddot{x} + 2\zeta\omega_n \dot{x} + \omega_n^2x = \frac{f}{m}$ # # For information on how to obtain this equation, you can see the lectures at the [class website](http://www.ucs.louisiana.edu/~jev9637/MCHE485.html). # In[1]: import numpy as np # Grab all of the NumPy functions with nickname np # In[2]: # We want our plots to be displayed inline, not in a separate window get_ipython().run_line_magic('matplotlib', 'inline') # In[3]: # Import the plotting functions import matplotlib.pyplot as plt # In[4]: # Define the System Parameters m = 1.0 # kg k = (2.0 * np.pi)**2 # N/m (Selected to give an undamped natrual frequency of 1Hz) wn = np.sqrt(k / m) # Natural Frequency (rad/s) z = 0.25 # Define a desired damping ratio c = 2 * z * wn * m # calculate the damping coeff. to create it (N/(m/s)) # Let's use the closed-form, steady-state solution we developed in lecture: # # Assume: # # $ \quad f(t) = \bar{f} \sin{\omega t} $ # # Then, the solution $x(t)$ should have the form: # # $ \quad x(t) = | x | \sin{\left( \omega t + \phi \right) } $ # # Substituting this assumed solution into the equation of motion and solving for $ \bar{x} $ and $ \phi $: # # $ \quad | \bar{x} | = \frac{\bar{f}}{m} \left( \frac{1}{\sqrt{\left(\omega_n^2 - \omega^2\right)^2 + \left(2 \zeta \omega_n \right)^2}} \right) $ # # and # # $ \quad \phi = \tan^{-1}\left({\frac{2 \zeta \omega_n \omega}{\omega_n^2 - \omega^2}}\right) $ # # ### Transfer Function Form # $ \quad \left| G(\omega) \right| = \frac{1}{m \sqrt{\left(\omega_n^2 - \omega^2\right)^2 + \left(2 \zeta \omega_n \right)^2}} $ # # ### Normalization # We can also nondimensionalize/normalize this by defining $ \Omega = \frac{\omega}{\omega_n} $. # # $ \quad \left| G(\Omega) \right| = \frac{1}{k \sqrt{\left(1 - \Omega^2\right)^2 + \left(2 \zeta \Omega \right)^2}} $ # # and # # $ \quad \phi = \tan^{-1}\left({\frac{2 \zeta \Omega}{1 - \Omega^2}}\right) $ # # Let's plot the normalized versions. # In[5]: # Set up input parameters wun = np.linspace(0,5,500) # Frequency range for freq response plot, 0-4 Omega with 500 points in-between w = np.linspace(0,5,500) # Frequency range for freq response plot, 0-4 Omega with 500 points in-between # Let's examine a few different damping ratios z = 0.0 mag_normal_un = 1/(k*np.sqrt((1 - w**2)**2 + (2*z*w)**2)) phase_un = -np.arctan2((2*z*w),(1 - w**2)) * 180/np.pi # Let's mask the phase discontinuity, so it isn't plotted pos = np.where(np.abs(k*mag_normal_un) >= 25) phase_un[pos] = np.nan wun[pos] = np.nan z = 0.1 mag_normal_0p1 = 1/(k*np.sqrt((1 - w**2)**2 + (2*z*w)**2)) phase_0p1 = -np.arctan2((2*z*w),(1 - w**2)) * 180/np.pi z = 0.2 mag_normal_0p2 = 1/(k*np.sqrt((1 - w**2)**2 + (2*z*w)**2)) phase_0p2 = -np.arctan2((2*z*w),(1 - w**2)) * 180/np.pi z = 0.4 mag_normal_0p4 = 1/(k*np.sqrt((1 - w**2)**2 + (2*z*w)**2)) phase_0p4 = -np.arctan2((2*z*w),(1 - w**2)) * 180/np.pi # In[6]: # Let's plot the magnitude (normlized by k G(Omega)) # Make the figure pretty, then plot the results # "pretty" parameters selected based on pdf output, not screen output # Many of these setting could also be made default by the .matplotlibrc file fig = plt.figure(figsize=(6,4)) ax = plt.gca() plt.subplots_adjust(bottom=0.17,left=0.17,top=0.96,right=0.96) plt.setp(ax.get_ymajorticklabels(),family='Serif',fontsize=18) plt.setp(ax.get_xmajorticklabels(),family='Serif',fontsize=18) ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.grid(True,linestyle=':',color='0.75') ax.set_axisbelow(True) plt.xlabel(r'Normalized Frequency ($\Omega$)',family='Serif',fontsize=22,weight='bold',labelpad=5) plt.ylabel(r'$k |G(\Omega)|$',family='Serif',fontsize=22,weight='bold',labelpad=35) plt.plot(wun, k*mag_normal_un, linewidth=2, label=r'$\zeta$ = 0.0') plt.plot(w, k*mag_normal_0p1, linewidth=2, linestyle = '-.', label=r'$\zeta$ = 0.1') plt.plot(w, k*mag_normal_0p2, linewidth=2, linestyle = ':', label=r'$\zeta$ = 0.2') plt.plot(w, k*mag_normal_0p4, linewidth=2, linestyle = '--',label=r'$\zeta$ = 0.4') plt.xlim(0,5) plt.ylim(0,7) leg = plt.legend(loc='upper right', fancybox=True) ltext = leg.get_texts() plt.setp(ltext,family='Serif',fontsize=16) # save the figure as a high-res pdf in the current folder # plt.savefig('Forced_Freq_Resp_mag.pdf',dpi=300) fig.set_size_inches(9,6) # Resize the figure for better display in the notebook # In[7]: # Now let's plot the phase # Plot the Phase Response # Make the figure pretty, then plot the results # "pretty" parameters selected based on pdf output, not screen output # Many of these setting could also be made default by the .matplotlibrc file fig = plt.figure(figsize=(6,4)) ax = plt.gca() plt.subplots_adjust(bottom=0.17,left=0.17,top=0.96,right=0.96) plt.setp(ax.get_ymajorticklabels(),family='Serif',fontsize=18) plt.setp(ax.get_xmajorticklabels(),family='Serif',fontsize=18) ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.grid(True,linestyle=':',color='0.75') ax.set_axisbelow(True) plt.xlabel(r'Normalized Frequency ($\Omega$)',family='Serif',fontsize=22,weight='bold',labelpad=5) plt.ylabel(r'Phase (deg.)',family='Serif',fontsize=22,weight='bold',labelpad=8) plt.plot(wun, phase_un, linewidth=2, label=r'$\zeta$ = 0.0') plt.plot(w, phase_0p1, linewidth=2, linestyle = '-.', label=r'$\zeta$ = 0.1') plt.plot(w, phase_0p2, linewidth=2, linestyle = ':', label=r'$\zeta$ = 0.2') plt.plot(w, phase_0p4, linewidth=2, linestyle = '--', label=r'$\zeta$ = 0.4') plt.xlim(0,5) plt.ylim(-190,10) plt.yticks([-180,-90,0]) leg = plt.legend(loc='upper right', fancybox=True) ltext = leg.get_texts() plt.setp(ltext,family='Serif',fontsize=16) # save the figure as a high-res pdf in the current folder # plt.savefig('Forced_Freq_Resp_Phase.pdf',dpi=300) fig.set_size_inches(9,6) # Resize the figure for better display in the notebook # In[8]: # Let's plot the magnitude and phase as subplots, to make it easier to compare # Make the figure pretty, then plot the results # "pretty" parameters selected based on pdf output, not screen output # Many of these setting could also be made default by the .matplotlibrc file fig, (ax1, ax2) = plt.subplots(2, 1, sharex = True, figsize=(8,8)) plt.subplots_adjust(bottom=0.12,left=0.17,top=0.96,right=0.96) plt.setp(ax.get_ymajorticklabels(),family='serif',fontsize=18) plt.setp(ax.get_xmajorticklabels(),family='serif',fontsize=18) ax1.spines['right'].set_color('none') ax1.spines['top'].set_color('none') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.grid(True,linestyle=':',color='0.75') ax1.set_axisbelow(True) ax2.spines['right'].set_color('none') ax2.spines['top'].set_color('none') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.grid(True,linestyle=':',color='0.75') ax2.set_axisbelow(True) plt.xlabel(r'Normalized Frequency $\left(\Omega = \frac{\omega}{\omega_n}\right)$',family='serif',fontsize=22,weight='bold',labelpad=5) plt.xticks([0,1],['0','$\Omega = 1$']) # Magnitude plot ax1.set_ylabel(r'$ k|G(\Omega)| $',family='serif',fontsize=22,weight='bold',labelpad=40) ax1.plot(wun, k*mag_normal_un, linewidth=2, label=r'$\zeta$ = 0.0') ax1.plot(w, k*mag_normal_0p1, linewidth=2, linestyle = '-.', label=r'$\zeta$ = 0.1') ax1.plot(w, k*mag_normal_0p2, linewidth=2, linestyle = ':', label=r'$\zeta$ = 0.2') ax1.plot(w, k*mag_normal_0p4, linewidth=2, linestyle = '--',label=r'$\zeta$ = 0.4') ax1.set_ylim(0.0,7.0) ax1.set_yticks([0,1,2,3,4,5],['0', '1']) ax1.leg = ax1.legend(loc='upper right', fancybox=True) ltext = ax1.leg.get_texts() plt.setp(ltext,family='Serif',fontsize=16) # Phase plot ax2.set_ylabel(r'$ \phi $ (deg)',family='serif',fontsize=22,weight='bold',labelpad=10) # ax2.plot(wnorm,TFnorm_phase*180/np.pi,linewidth=2) ax2.plot(wun, phase_un, linewidth=2, label=r'$\zeta$ = 0.0') ax2.plot(w, phase_0p1, linewidth=2, linestyle = '-.', label=r'$\zeta$ = 0.1') ax2.plot(w, phase_0p2, linewidth=2, linestyle = ':', label=r'$\zeta$ = 0.2') ax2.plot(w, phase_0p4, linewidth=2, linestyle = '--', label=r'$\zeta$ = 0.4') ax2.set_ylim(-200.0,20.0,) ax2.set_yticks([0, -90, -180]) ax2.leg = ax2.legend(loc='upper right', fancybox=True) ltext = ax2.leg.get_texts() plt.setp(ltext,family='Serif',fontsize=16) # Adjust the page layout filling the page using the new tight_layout command plt.tight_layout(pad=0.5) # If you want to save the figure, uncomment the commands below. # The figure will be saved in the same directory as your IPython notebook. # Save the figure as a high-res pdf in the current folder # plt.savefig('MassSpring_SeismicTF.pdf',dpi=300) fig.set_size_inches(9,9) # Resize the figure for better display in the notebook #
# #### Licenses # Code is licensed under a 3-clause BSD style license. See the licenses/LICENSE.md file. # # Other content is provided under a [Creative Commons Attribution-NonCommercial 4.0 International License](http://creativecommons.org/licenses/by-nc/4.0/), CC-BY-NC 4.0. # In[9]: # This cell will just improve the styling of the notebook from IPython.core.display import HTML import urllib.request response = urllib.request.urlopen("https://cl.ly/1B1y452Z1d35") HTML(response.read().decode("utf-8"))