Matplotlib: 2D and 3D plotting in Python


Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures. Some of the many advantages of this library include:

  • Easy to get started
  • Support for $\LaTeX$ formatted labels and texts
  • Great control of every element in a figure, including figure size and DPI.
  • High-quality output in many formats, including PNG, PDF, SVG, EPS, and PGF(tikZ).
  • GUI for interactively exploring figures and support for headless generation of figure files (useful for batch jobs).

One of the of the key features of matplotlib is that all aspects of the figure can be controlled programmatically. This is important for reproducibility and convenient when one needs to regenerate the figure with updated data or change its appearance.

To get started using Matplotlib in a Python program, either include the symbols from the pylab module (the easy way):

In [1]:
from pylab import *

or import the matplotlib.pyplot module under the name plt (the tidy way):

In [2]:
import matplotlib.pyplot as plt


The easiest way to get started with plotting using matplotlib is often to use the MATLAB-like API provided by matplotlib.

It is designed to be compatible with MATLAB's plotting functions, so it is easy to get started with if you are familiar with MATLAB.

To use this API from within the ipython notebook, do:

In [3]:
%matplotlib inline
Using matplotlib backend: MacOSX
Populating the interactive namespace from numpy and matplotlib
WARNING: pylab import has clobbered these variables: ['linalg', 'draw_if_interactive', 'random', 'power', 'info', 'fft']
`%matplotlib` prevents importing * from pylab and numpy


A simple figure with MATLAB-like plotting API:

In [4]:
x = linspace(0, 5, 10)
y = x ** 2
In [5]:
figure() # not necessary when run from within the notebook
plot(x, y, "r")
# also run `show()` when operating from the terminal
<matplotlib.text.Text at 0x105745fd0>

Most of the plotting related functions in MATLAB are covered. For example, subplot and color/symbol selection:

In [6]:
subplot(1, 2, 1)
plot(x, y, "r--")
subplot(1, 2, 2)
plot(y, x, "g*-")
[<matplotlib.lines.Line2D at 0x105927f10>]

The good thing about the pylab MATLAB-style API is that it is easy to get started with if you are familiar with MATLAB, and it has a minumum of coding overhead for simple plots. However, I'd encourage not using the MATLAB compatible API for anything but the simplest figures. Instead, I recommend learning and using matplotlib's object-oriented plotting API. It is remarkably powerful. For advanced figures with subplots, insets and other components it is very nice to work with.

The matplotlib object-oriented API

The main idea with object-oriented programming is to have objects that one can apply functions and actions on, and no object or program states should be global (such as the MATLAB-like API). The real advantage of this approach becomes apparent when more than one figure is created, or when a figure contains more than one subplot.

To use the object-oriented API we start out very much like in the previous example, but instead of creating a new global figure instance we store a reference to the newly created figure instance in the fig variable, and from it we create a new axis instance axes using the add_axes method in the Figure class instance fig:

In [7]:
fig = plt.figure()

axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

axes.plot(x, y, "r")

<matplotlib.text.Text at 0x105980fd0>

Although a little bit more code is involved, the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure:

In [8]:
fig = plt.figure()

axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes
axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes

# main figure
axes1.plot(x, y, "r")

# insert
axes2.plot(y, x, "g")
axes2.set_title("inset title")
<matplotlib.text.Text at 0x105aa9290>

If we don't care about being explicit about where our plot axes are placed in the figure canvas, then we can use one of the many axis layout managers in matplotlib. My favorite is subplots, which can be used like this:

In [9]:
(fig, axes) = plt.subplots()

axes.plot(x, y, "r")
<matplotlib.text.Text at 0x105b55590>
In [10]:
(fig, axes) = plt.subplots(nrows=1, ncols=2)

for i, ax in enumerate(axes):
    ax.plot(x, y, "r")
    ax.set_title("title {}".format(i + 1))

That was easy, but it isn't so pretty with overlapping figure axes and labels, right? We can deal with that by using the fig.tight_layout method, which automatically adjusts the positions of the axes on the figure canvas so that there is no overlapping content:

In [11]:
(fig, axes) = plt.subplots(nrows=1, ncols=2)

for i, ax in enumerate(axes):
    ax.plot(x, y, "r")
    ax.set_title("title {}".format(i + 1))

Figure size, aspect ratio and DPI

Matplotlib allows the aspect ratio, DPI and figure size to be specified when the Figure object is created, using the figsize and dpi keyword arguments. figsize is a tuple of the width and height of the figure in inches, and dpi is the dots-per-inch (pixel per inch). To create an 800x400 pixel, 100 dots-per-inch figure, we can do:

In [12]:
fig = plt.figure(figsize=(8, 4), dpi=100)
<matplotlib.figure.Figure at 0x10571e1d0>

The same arguments can also be passed to layout managers, such as the subplots function:

In [13]:
(fig, axes) = plt.subplots(figsize=(12, 3))

axes.plot(x, y, "r")
<matplotlib.text.Text at 0x105d1f950>

Saving figures

To save a figure to a file we can use the savefig method in the Figure class:

In [14]:

Here we can also optionally specify the DPI and choose between different output formats:

In [15]:
fig.savefig("filename.png", dpi=200)

What formats are available and which ones should be used for best quality?

Matplotlib can generate high-quality output in a number formats, including PNG, JPG, EPS, SVG, PGF and PDF. For scientific papers, I recommend using PDF whenever possible. (LaTeX documents compiled with pdflatex can include PDFs using the includegraphics command). In some cases, PGF can also be good alternative.

Legends, labels and titles

Now that we have covered the basics of how to create a figure canvas and add axes instances to the canvas, let's look at how decorate a figure with titles, axis labels, and legends.

Figure titles

A title can be added to each axis instance in a figure. To set the title, use the set_title method in the axes instance:

In [16]:
<matplotlib.text.Text at 0x105c775d0>

Axis labels

Similarly, with the methods set_xlabel and set_ylabel, we can set the labels of the X and Y axes:

In [17]:
<matplotlib.text.Text at 0x105c69c90>


Legends for curves in a figure can be added in two ways. One method is to use the legend method of the axis object and pass a list/tuple of legend texts for the previously defined curves:

In [18]:
ax.legend(["curve1", "curve2", "curve3"])
<matplotlib.legend.Legend at 0x10571e050>

The method described above follows the MATLAB API. It is somewhat prone to errors and unflexible if curves are added to or removed from the figure (resulting in a wrongly labelled curve).

A better method is to use the label="label text" keyword argument when plots or other objects are added to the figure, and then using the legend method without arguments to add the legend to the figure:

In [19]:
ax.plot(x, x ** 2, label="curve1")
ax.plot(x, x ** 3, label="curve2")
<matplotlib.legend.Legend at 0x105c69750>

The advantage with this method is that if curves are added or removed from the figure, the legend is automatically updated accordingly.

The legend function takes an optional keyword argument loc that can be used to specify where in the figure the legend is to be drawn. The allowed values of loc are numerical codes for the various places the legend can be drawn. See for details. Some of the most common loc values are:

In [20]:
ax.legend(loc=0) # let matplotlib decide the optimal location
ax.legend(loc=1) # upper right corner
ax.legend(loc=2) # upper left corner
ax.legend(loc=3) # lower left corner
ax.legend(loc=4) # lower right corner
# .. many more options are available
<matplotlib.legend.Legend at 0x105d52990>

The following figure shows how to use the figure title, axis labels and legends described above:

In [21]:
(fig, ax) = plt.subplots()

axes.plot(x, x ** 2, label="y = x^2")
ax.plot(x, x ** 3, label="y = x^3")
ax.legend(loc=2) # upper left corner
<matplotlib.text.Text at 0x105d65490>

Formatting text: LaTeX, fontsize, font family

The figure above is functional, but it does not (yet) satisfy the criteria for a figure used in a publication. First and foremost, we need to have LaTeX formatted text, and second, we need to be able to adjust the font size to appear right in a publication.

Matplotlib has great support for LaTeX. All we need to do is to use dollar signs encapsulate LaTeX in any text (legend, title, label, etc.). For example, $y=x^3$. But here we can run into a slightly subtle problem with LaTeX code and Python text strings. In LaTeX, we frequently use the backslash in commands, for example \alpha to produce the symbol $\alpha$. But the backslash already has a meaning in Python strings (the escape code character). To avoid Python messing up our latex code, we need to use "raw" text strings. Raw text strings are prepended with an 'r', like r"\alpha" or r'\alpha' instead of "\alpha" or '\alpha':

In [22]:
(fig, ax) = plt.subplots()

ax.plot(x, x ** 2, label=r"$y = \alpha^2$")
ax.plot(x, x ** 3, label=r"$y = \alpha^3$")
ax.legend(loc=2) # upper left corner
ax.set_xlabel(r"$\alpha$", fontsize=18)
ax.set_ylabel(r"$y$", fontsize=18)
<matplotlib.text.Text at 0x105c47950>

We can also change the global font size and font family, which applies to all text elements in a figure (tick labels, axis labels and titles, legends, etc.):

In [23]:
# Update the matplotlib configuration parameters:
matplotlib.rcParams.update({"font.size": 18, 
                            "": "serif"})
In [24]:
fig, ax = plt.subplots()

ax.plot(x, x ** 2, label=r"$y = \alpha^2$")
ax.plot(x, x ** 3, label=r"$y = \alpha^3$")
ax.legend(loc=2) # upper left corner
<matplotlib.text.Text at 0x1063e8c90>

Setting colors, linewidths, linetypes


With matplotlib, we can define the colors of lines and other graphical elements in a number of ways. First of all, we can use the MATLAB-like syntax where 'b' means blue, 'g' means green, etc. The MATLAB API for selecting line styles are also supported: where, for example, 'b.-' means a blue line with dots:

In [25]:
matplotlib.rcParams.update({"font.size": 11, 
                            "": "sans-serif"})

# MATLAB style line color and style 
ax.plot(x, x ** 2, "b.-") # blue line with dots
ax.plot(x, x ** 3, "g--") # green dashed line
[<matplotlib.lines.Line2D at 0x105d57250>]

We can also define colors by their names or RGB hex codes and optionally provide an alpha value using the color and alpha keyword arguments:

In [26]:
(fig, ax) = plt.subplots()

ax.plot(x, x + 1, color="red", alpha=0.5) 
# half-transparant red
ax.plot(x, x + 2, color="#1155dd")        
# RGB hex code for a bluish color
ax.plot(x, x + 3, color="#15cc55")        
# RGB hex code for a greenish color
[<matplotlib.lines.Line2D at 0x10649a4d0>]

Line and marker styles

To change the line width, we can use the linewidth or lw keyword argument. The line style can be selected using the linestyle or ls keyword arguments:

In [27]:
(fig, ax) = plt.subplots(figsize=(12,6))

ax.plot(x, x + 1, color="blue", linewidth=0.25)
ax.plot(x, x + 2, color="blue", linewidth=0.50)
ax.plot(x, x + 3, color="blue", linewidth=1.00)
ax.plot(x, x + 4, color="blue", linewidth=2.00)

# possible linestype options ‘-‘, ‘–’, ‘-.’, ‘:’, ‘steps’
ax.plot(x, x + 5, color="red", lw=2, linestyle="-")
ax.plot(x, x + 6, color="red", lw=2, ls="-.")
ax.plot(x, x + 7, color="red", lw=2, ls=":")

# custom dash
line, = ax.plot(x, x + 8, color="black", lw=1.50)
line.set_dashes([5, 10, 15, 10]) 
# format: line length, space length, ...

# possible marker symbols: 
# '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4', ...
ax.plot(x, x + 9, color="green", lw=2, ls="*", marker="+")
ax.plot(x, x + 10, color="green", lw=2, ls="*", marker="o")
ax.plot(x, x + 11, color="green", lw=2, ls="*", marker="s")
ax.plot(x, x + 12, color="green", lw=2, ls="*", marker="1")

# marker size and color
ax.plot(x, x + 13, color="purple", lw=1, ls="-", 
        marker="o", markersize=2)
ax.plot(x, x + 14, color="purple", lw=1, ls="-",
        marker="o", markersize=4)
ax.plot(x, x + 15, color="purple", lw=1, ls="-", 
        marker="o", markersize=8, markerfacecolor="red")
ax.plot(x, x + 16, color="purple", lw=1, ls="-", 
        marker="s", markersize=8, markerfacecolor="yellow", 
        markeredgewidth=2, markeredgecolor="blue")
[<matplotlib.lines.Line2D at 0x1066736d0>]

Control over axis appearance

The appearance of the axes is an important aspect of a figure that we often need to modify to make a publication quality graphics. We need to be able to control where the ticks and labels are placed, modify the font size and possibly the labels used on the axes. In this section we will look at controling those properties in a matplotlib figure.

Plot range

The first thing we might want to configure is the ranges of the axes. We can do this using the set_ylim and set_xlim methods in the axis object, or axis('tight') for automatrically getting "tightly fitted" axes ranges:

In [28]:
(fig, axes) = plt.subplots(1, 3, figsize=(12, 4))

axes[0].plot(x, x ** 2, x, x ** 3)
axes[0].set_title("default axes ranges")

axes[1].plot(x, x ** 2, x, x ** 3)
axes[1].set_title("tight axes")

axes[2].plot(x, x ** 2, x, x ** 3)
axes[2].set_ylim([0, 60])
axes[2].set_xlim([2, 5])
axes[2].set_title("custom axes range")
<matplotlib.text.Text at 0x106840f50>

Logarithmic scale

It is also possible to set a logarithmic scale for one or both axes. This functionality is in fact only one application of a more general transformation system in Matplotlib. Each of the axes' scales are set seperately using set_xscale and set_yscale methods which accept one parameter (with the value "log" in this case):

In [29]:
(fig, axes) = plt.subplots(1, 2, figsize=(10,4))
axes[0].plot(x, x ** 2, x, exp(x))
axes[0].set_title("Normal scale")

axes[1].plot(x, x ** 2, x, exp(x))
axes[1].set_title("Logarithmic scale (y)")
<matplotlib.text.Text at 0x106980fd0>

Placement of ticks and custom tick labels

We can explicitly determine where we want the axis ticks with set_xticks and set_yticks, which both take a list of values for where on the axis the ticks are to be placed. We can also use the set_xticklabels and set_yticklabels methods to provide a list of custom text labels for each tick location:

In [30]:
(fig, ax) = plt.subplots(figsize=(10, 4))

ax.plot(x, x ** 2, x, x ** 3, lw=2)

ax.set_xticks([1, 2, 4, 5])
ax.set_xticklabels([r"$\alpha$", r"$\beta$", r"$\gamma$",
                    r"$\delta$", r"$\epsilon$"], fontsize=18)

yticks = [0, 50, 100, 150]
ax.set_yticklabels(["${:.1f}$".format(y) for y in yticks], 
[<matplotlib.text.Text at 0x1069b7790>,
 <matplotlib.text.Text at 0x106898590>,
 <matplotlib.text.Text at 0x106a0e3d0>,
 <matplotlib.text.Text at 0x106a0ea50>]

There are a number of more advanced methods for controlling major and minor tick placement in matplotlib figures, such as automatic placement according to different policies. See for details.

Scientific notation

With large numbers on axes, it is often better use scientific notation:

In [31]:
(fig, ax) = plt.subplots(1, 1)
ax.plot(x, x ** 2, x, exp(x))
ax.set_title("scientific notation")

ax.set_yticks([0, 50, 100, 150])

from matplotlib import ticker
formatter = ticker.ScalarFormatter(useMathText=True)
formatter.set_powerlimits((-1, 1)) 

Axis number and axis label spacing

In [32]:
# distance between x and y axis and the numbers on the axes
rcParams["xtick.major.pad"] = 5
rcParams["ytick.major.pad"] = 5

(fig, ax) = plt.subplots(1, 1)
ax.plot(x, x ** 2, x, exp(x))
ax.set_yticks([0, 50, 100, 150])

ax.set_title("label and axis spacing")

# padding between axis label and axis numbers
ax.xaxis.labelpad = 5
ax.yaxis.labelpad = 5

<matplotlib.text.Text at 0x106a44510>
In [33]:
# restore defaults
rcParams["xtick.major.pad"] = 3
rcParams["ytick.major.pad"] = 3

Axis grid

With the grid method in the axis object, we can turn on and off grid lines. We can also customize the appearance of the grid lines using the same keyword arguments as the plot function:

In [34]:
(fig, axes) = plt.subplots(1, 2, figsize=(10, 3))

# default grid appearance
axes[0].plot(x, x ** 2, x, x ** 3, lw=2)

# custom grid appearance
axes[1].plot(x, x ** 2, x, x ** 3, lw=2)
axes[1].grid(color="b", alpha=0.5, linestyle="dashed", linewidth=0.5)

Axis spines

We can also change the properties of axis spines:

In [35]:
(fig, ax) = plt.subplots(figsize=(6, 2))



# turn off axis spine to the right
# only ticks on the left side

Twin axes

Sometimes it is useful to have dual x or y axes in a figure; for example, when plotting curves with different units together. Matplotlib supports this with the twinx and twiny functions:

In [36]:
(fig, ax1) = plt.subplots()

ax1.plot(x, x ** 2, lw=2, color="blue")
ax1.set_ylabel(r"area $(m^2)$", fontsize=18, color="blue")
for label in ax1.get_yticklabels():
ax2 = ax1.twinx()
ax2.plot(x, x ** 3, lw=2, color="red")
ax2.set_ylabel(r"volume $(m^3)$", fontsize=18, color="red")
for label in ax2.get_yticklabels():

Axes where x and y is zero

In [37]:
(fig, ax) = plt.subplots()


ax.spines["bottom"].set_position(("data", 0)) 
# set position of x spine to x=0

ax.spines["left"].set_position(("data", 0))   
# set position of y spine to y=0

xx = np.linspace(-0.75, 1., 100)
ax.plot(xx, xx ** 3)
[<matplotlib.lines.Line2D at 0x106d73390>]

Other 2D plot styles

In addition to the regular plot method, there are a number of other functions for generating different kind of plots. See the matplotlib plot gallery for a complete list of available plot types: Some of the more useful ones are show below:

In [38]:
n = array([0, 1, 2, 3, 4, 5])
In [39]:
(fig, axes) = plt.subplots(1, 4, figsize=(12, 3))

axes[0].scatter(xx, xx + 0.25 * randn(len(xx)))

axes[1].step(n, n ** 2, lw=2)

axes[2].bar(n, n ** 2, align="center", width=0.5, alpha=0.5)

axes[3].fill_between(x, x ** 2, x ** 3, color="green", alpha=0.5)
<matplotlib.text.Text at 0x106fd79d0>
In [40]:
# polar plot using add_axes and polar projection
fig = plt.figure()
ax = fig.add_axes([0.0, 0.0, .6, .6], polar=True)
t = linspace(0, 2 * pi, 100)
ax.plot(t, t, color="blue", lw=3)
[<matplotlib.lines.Line2D at 0x107047350>]
In [41]:
# A histogram
n = np.random.randn(100000)
(fig, axes) = plt.subplots(1, 2, figsize=(12, 4))

axes[0].set_title("Default histogram")
axes[0].set_xlim((min(n), max(n)))

axes[1].hist(n, cumulative=True, bins=50)
axes[1].set_title("Cumulative detailed histogram")
axes[1].set_xlim((min(n), max(n)))
(-4.3767376531098279, 4.1876897567656961)

Text annotation

Annotating text in matplotlib figures can be done using the text function. It supports LaTeX formatting just like axis label texts and titles:

In [42]:
(fig, ax) = plt.subplots()

ax.plot(xx, xx ** 2, xx, xx ** 3)

ax.text(0.15, 0.2, r"$y=x^2$", fontsize=20, color="blue")
ax.text(0.65, 0.1, r"$y=x^3$", fontsize=20, color="green")
<matplotlib.text.Text at 0x1073ca950>

Figures with multiple subplots and insets

Axes can be added to a matplotlib Figure canvas manually using fig.add_axes or using a sub-figure layout manager such as subplots, subplot2grid, or gridspec:


In [43]:
(fig, ax) = plt.subplots(2, 3)


In [44]:
fig = plt.figure()
ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)
ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)
ax4 = plt.subplot2grid((3, 3), (2, 0))
ax5 = plt.subplot2grid((3, 3), (2, 1))


In [45]:
import matplotlib.gridspec as gridspec
In [46]:
fig = plt.figure()

gs = gridspec.GridSpec(2, 3, height_ratios=[2, 1], 
                       width_ratios=[1, 2, 1])
for g in gs:
    ax = fig.add_subplot(g)


Manually adding axes with add_axes is useful for adding insets to figures:

In [47]:
(fig, ax) = plt.subplots()

ax.plot(xx, xx ** 2, xx, xx ** 3)

# inset
inset_ax = fig.add_axes([.2, .55, .35, .35])
# X, Y, width, height

inset_ax.plot(xx, xx ** 2, xx, xx ** 3)
inset_ax.set_title("zoom near origin")

# set axis range
inset_ax.set_xlim(-.2, .2)
inset_ax.set_ylim(-.005, .01)

# set axis tick locations
inset_ax.set_yticks([0, .005, .01])
inset_ax.set_xticks([-.1, 0, .1])
[<matplotlib.axis.XTick at 0x107853250>,
 <matplotlib.axis.XTick at 0x107853110>,
 <matplotlib.axis.XTick at 0x10786f1d0>]

Colormap and contour figures

Colormaps and contour figures are useful for plotting functions of two variables. In most of these functions we will use a colormap to encode one dimension of the data. There are a number of predefined colormaps. It is relatively straightforward to define custom colormaps. For a list of pre-defined colormaps, see:

In [48]:
alpha = 0.7
phi_ext = 2 * pi * 0.5

def flux_qubit_potential(phi_m, phi_p):
    return 2 + alpha - 2 * cos(phi_p) * cos(phi_m) - \
                       alpha * cos(phi_ext - 2*phi_p)
In [49]:
phi_m = linspace(0, 2 * pi, 100)
phi_p = linspace(0, 2 * pi, 100)
X,Y = meshgrid(phi_p, phi_m)
Z = flux_qubit_potential(X, Y)


for pcolor (and pcolormesh), the grid gives the boundaries of colored quadrilaterals.

In [50]:
(fig, ax) = plt.subplots()

p = ax.pcolor(X / (2 * pi), Y / (2 * pi), Z, cmap=cm.RdBu, 
              vmin=abs(Z).min(), vmax=abs(Z).max()) 
# vmin and vmax are optional
cb = fig.colorbar(p, ax=ax)


For imshow (and contour), the data points and the grid intersections coincide

In [51]:
(fig, ax) = plt.subplots()

im = ax.imshow(Z, cmap=cm.RdBu, extent=[0, 1, 0, 1])
im.set_interpolation("bilinear") # many more options are available

cb = fig.colorbar(im, ax=ax)


In [52]:
fig, ax = plt.subplots()

cnt = ax.contour(Z, cmap=cm.RdBu)

3D figures

To use 3D graphics in matplotlib, we first need to create an instance of the Axes3D class. 3D axes can be added to a matplotlib figure canvas in exactly the same way as 2D axes; or, more conveniently, by passing a projection='3d' keyword argument to the add_axes or add_subplot methods.

In [53]:
from mpl_toolkits.mplot3d.axes3d import Axes3D

Surface plots

In [54]:
fig = plt.figure(figsize=(14, 6))

# `ax` is a 3D-aware axis instance because of the projection="3d" k
# eyword argument to `add_subplot`
ax = fig.add_subplot(1, 2, 1, projection="3d")

p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0)

# surface_plot with color grading and color bar
ax = fig.add_subplot(1, 2, 2, projection="3d")
p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, 
                    linewidth=0, antialiased=False)
cb = fig.colorbar(p, shrink=0.5)

Wire-frame plot

In [55]:
fig = plt.figure(figsize=(8,6 ))

ax = fig.add_subplot(1, 1, 1, projection="3d")

p = ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4)