18.06, PSET 9 SOLUTIONS

Problem 1 First note that $(A_i/v)_{ij} = A_{ij}/v_i$ and $(A'_i/v')_{ij} = A_{ji}/v_j$, so these matrices are transpose of each other. So we need to verify that for a 2x2 Markov matrix A and the steady state v A_{\cdot}/v is a symmetric matrix. Since A is Markov it is of the form

$$A = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix}$$

for some $0 \le a, b \le 1$. We can check that an eigenvector with eigenvalue 1 is $\binom{b}{1-a}$, which is non-zero as long as A is not the identity. So the steady state is just this eigenvector normalized to have sum 1, so is given by

$$\begin{pmatrix} \frac{b}{1-a+b} \\ \frac{1-a}{1-a+b} \end{pmatrix}$$

And so

$$A./v = \begin{pmatrix} \frac{a}{b}(1-a+b) & 1-a+b\\ 1-a+b & \frac{1-b}{1-a}(1-a+b) \end{pmatrix}$$

So this matrix is clearly symmetric. The remaining case is the case A = I, for which all vectors are eigenvectors of eigenvalue 1 and clearly $A_{.}/v$ is symmetric in this case for any steady state v.

Problem 2 Define D = diagonal(v). Using this matrix $A_{v} = D^{-1}A$ and $A'./v' = A^T D^{-1}$. So if these 2 are equal we get $A^T = D^{-1} A D$ and so A is diagonally similar to A^T

Problem 3 Suppose we have $A^T = D^{-1}AD$, with D a diagonal matrix with positive entries. Let $S = D^{1/2}$ be the diagonal matrix with entries the square roots of the entries of D. Then $D = S^2$ and so $S^{-1}AS = SA^TS^{-1} = (S^{-1}AS)^T$ and so A is similar to a symmetric matrix. As seen in class symmetric matrices have real eigenvalues and similar matrices have the same eigenvalues, thus as Ais similar to $S^{-1}AS$, a symmetric matrix, we get that A has real eigenvalues

Problem 4 The matrix M is antisymmetric and orthogonal as can be checked by computing $M^T M = I$. By the same proof as symmetric matrices having real eigenvalues we get that antisymmetric matrices have purely imaginary eigenvalues. More concretly if x is an eigenvector of M with eigenvalue λ then $\lambda \bar{x}^T x = \bar{x}^T M x =$ $-\bar{x}^T M^T x = -\bar{\lambda} \bar{x}^T x$, so $\lambda = -\bar{\lambda}$ and so λ is purely imaginary.

Orthogonal matrices have eigenvalues of norm 1. Again let x be an eigenvector with eigenvalue λ then $||x|| = ||Mx|| = |\lambda|||x||$, so $|\lambda| = 1$.

It follows that the only possible eigenvalues of M are $\pm i$, so as the trace is 0

M has to have the same amount of eigenvalues i and -i, so it has both with multiplicity 2.

Problem 5 To check if these matrices are positive definite we have to check when the upper left determinants are positive.

(1)

$$S = \begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix}$$

The top corner determinant is 1 > 0 and so the only condition is $9-b^2 > 0$, ie -3 < b < 3

(2)

$$S = \begin{pmatrix} 2 & 4 \\ 4 & c \end{pmatrix}$$

The top corner determinant is 2 > 0 and so the only condition is 2c - 16 > 0, ie c > 8

(3)

$$S = \begin{pmatrix} c & b \\ b & c \end{pmatrix}$$

The top corner determinant gives the condition c > 0 and the determinant gives the condition $c^2 - b^2 > 0$. So this comes down to the condition c > |b|.

Problem 6 To check if these matrices are positive definite we have to check when the upper left determinants are positive.

(1)

$$S = \begin{pmatrix} s & -4 & -4 \\ -4 & s & -4 \\ -4 & -4 & s \end{pmatrix}$$

The top corner determinant gives the condition s > 0, the top 2x2 determinant gives the condition $s^2 - 16 > 0$ and the full determinant gives the condition $s^3 - 48s - 128 = (s+4)^2(s-8) > 0$. These conditions together give s > 8.

(2)

$$S = \begin{pmatrix} t & 3 & 0\\ 3 & t & 4\\ 0 & 4 & t \end{pmatrix}$$

The top corner determinant gives the condition t > 0, the top 2x2 determinant gives the condition $t^2 - 9 > 0$ and the full determinant gives the condition $t^3 - 25t = t(t+5)(t-5) > 0$. These conditions together give t > 5.

Problem 7

(1)

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{pmatrix}$$

A has rank 1 with both column and row space equal to $< \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} >$, and if

$$v = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \text{ we get } A = vv^T \text{ and so } A = (\frac{1}{\|v\|}v)\|v\|^2(\frac{1}{\|v\|}v)^T \text{ is the SVD of}$$
A.
(2)
$$= \begin{pmatrix} 2 & 3 & 4 & 5\\ 3 & 4 & 5 & 6 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{pmatrix}$$

This matrix is symmetric so the singular values are the absolute values of the eigenvalues. This matrix has rank 2, so we have 2 singular values being 0. The sum of the remaining eigenvalues is $tr(B) = 20 = \lambda_+ + \lambda_-$.

We can compute the square of the sum of the eigenvalues by computing the square sum of the entries of A. So we get $440 = \lambda_+^2 + \lambda_-^2$. It follows from this that $-20 = \lambda_+\lambda_-$. So we get the remaining eigenvalues are $\lambda_{\pm} = 10 \pm \sqrt{120}$ and so the singular values are $\sigma_+ = \lambda_+$ and $\sigma_- = -\lambda_-$.