18.06, PSET 9 SOLUTIONS

Problem 1 First note that $(A . / v)_{i j}=A_{i j} / v_{i}$ and $\left(A^{\prime} . / v^{\prime}\right)_{i j}=A_{j i} / v_{j}$, so these matrices are transpose of each other. So we need to verify that for a 2 x 2 Markov matrix A and the steady state $\mathrm{v} A . / v$ is a symmetric matrix. Since A is Markov it is of the form

$$
A=\left(\begin{array}{cc}
a & b \\
1-a & 1-b
\end{array}\right)
$$

for some $0 \leq a, b \leq 1$. We can check that an eigenvector with eigenvalue 1 is $\binom{b}{1-a}$, which is non-zero as long as A is not the identity. So the steady state is just this eigenvector normalized to have sum 1, so is given by

$$
\binom{\frac{b}{1-a+b}}{\frac{1-a}{1-a+b}}
$$

And so

$$
A . / v=\left(\begin{array}{cc}
\frac{a}{b}(1-a+b) & 1-a+b \\
1-a+b & \frac{1-b}{1-a}(1-a+b)
\end{array}\right)
$$

So this matrix is clearly symmetric. The remaining case is the case $A=I$, for which all vectors are eigenvectors of eigenvalue 1 and clearly $A . / v$ is symmetric in this case for any steady state v .

Problem 2 Define $D=\operatorname{diagonal}(v)$. Using this matrix $A . / v=D^{-1} A$ and $A^{\prime} . / v^{\prime}=A^{T} D^{-1}$. So if these 2 are equal we get $A^{T}=D^{-1} A D$ and so A is diagonally similar to A^{T}

Problem 3 Suppose we have $A^{T}=D^{-1} A D$, with D a diagonal matrix with positive entries. Let $S=D^{1 / 2}$ be the diagonal matrix with entries the square roots of the entries of D. Then $D=S^{2}$ and so $S^{-1} A S=S A^{T} S^{-1}=\left(S^{-1} A S\right)^{T}$ and so A is similar to a symmetric matrix. As seen in class symmetric matrices have real eigenvalues and similar matrices have the same eigenvalues, thus as A is similar to $S^{-1} A S$, a symmetric matrix, we get that A has real eigenvalues

Problem 4 The matrix M is antisymmetric and orthogonal as can be checked by computing $M^{T} M=I$. By the same proof as symmetric matrices having real eigenvalues we get that antisymmetric matrices have purely imaginary eigenvalues. More concretly if x is an eigenvector of M with eigenvalue λ then $\lambda \bar{x}^{T} x=\bar{x}^{T} M x=$ $-\bar{x}^{T} M^{T} x=-\bar{\lambda} \bar{x}^{T} x$, so $\lambda=-\bar{\lambda}$ and so λ is purely imaginary.
Orthogonal matrices have eigenvalues of norm 1. Again let x be an eigenvector with eigenvalue λ then $\|x\|=\|M x\|=|\lambda|\|x\|$, so $|\lambda|=1$.
It follows that the only possible eigenvalues of M are $\pm i$, so as the trace is 0
M has to have the same amount of eigenvalues i and $-i$, so it has both with multiplicity 2 .

Problem 5 To check if these matrices are positive definite we have to check when the upper left determinants are positive.
(1)

$$
S=\left(\begin{array}{ll}
1 & b \\
b & 9
\end{array}\right)
$$

The top corner determinant is $1>0$ and so the only condition is $9-b^{2}>0$, ie $-3<b<3$

$$
S=\left(\begin{array}{ll}
2 & 4 \tag{2}\\
4 & c
\end{array}\right)
$$

The top corner determinant is $2>0$ and so the only condition is $2 c-16>$ 0 , ie $c>8$
(3)

$$
S=\left(\begin{array}{ll}
c & b \\
b & c
\end{array}\right)
$$

The top corner determinant gives the condition $c>0$ and the determinant gives the condition $c^{2}-b^{2}>0$. So this comes down to the condition $c>|b|$.

Problem 6 To check if these matrices are positive definite we have to check when the upper left determinants are positive.
(1)

$$
S=\left(\begin{array}{ccc}
s & -4 & -4 \\
-4 & s & -4 \\
-4 & -4 & s
\end{array}\right)
$$

The top corner determinant gives the condition $s>0$, the top 2 x 2 determinant gives the condition $s^{2}-16>0$ and the full determinant gives the condition $s^{3}-48 s-128=(s+4)^{2}(s-8)>0$. These conditions together give $s>8$.

$$
S=\left(\begin{array}{ccc}
t & 3 & 0 \tag{2}\\
3 & t & 4 \\
0 & 4 & t
\end{array}\right)
$$

The top corner determinant gives the condition $t>0$, the top 2×2 determinant gives the condition $t^{2}-9>0$ and the full determinant gives the condition $t^{3}-25 t=t(t+5)(t-5)>0$. These conditions together give $t>5$.

Problem 7

(1)

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12 \\
4 & 8 & 12 & 16
\end{array}\right)
$$

A has rank 1 with both column and row space equal to $<\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)>$, and if $v=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$, we get $A=v v^{T}$ and so $A=\left(\frac{1}{\|v\|} v\right)\|v\|^{2}\left(\frac{1}{\|v\|} v\right)^{T}$ is the SVD of A.
(2)

$$
B=\left(\begin{array}{llll}
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7 \\
5 & 6 & 7 & 8
\end{array}\right)
$$

This matrix is symmetric so the singular values are the absolute values of the eigenvalues. This matrix has rank 2 , so we have 2 singular values being 0 . The sum of the remaining eigenvalues is $\operatorname{tr}(B)=20=\lambda_{+}+\lambda_{-}$.

We can compute the square of the sum of the eigenvalues by computing the square sum of the entries of A . So we get $440=\lambda_{+}^{2}+\lambda_{-}^{2}$. It follows from this that $-20=\lambda_{+} \lambda_{-}$. So we get the remaining eigenvalues are $\lambda_{ \pm}=10 \pm \sqrt{120}$ and so the singular values are $\sigma_{+}=\lambda_{+}$and $\sigma_{-}=-\lambda_{-}$.

