
1) Use eigenvalues to compute a formula for
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Answer: First we diagonalize : the characteristic polynomial is

 so the eigenvalues are 1 and 3. The

eigenvector for  is a basis vector for  which we can take to be 

(note the julia above gives the normalized form). The eigenvector for  is a basis vector for

 which can be taken to be . So we can diagonalize  as

and so
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2) The Tribonacci numbers are defined in analogy to the Fibonacci numbers:

, ,

 (for )

= = 0T1 T2 = 1T3
= + +Tn Tn−1 Tn−2 Tn−3 n > 3
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Let . Find a matrix A that relates  to =uk



Tk+2

Tk+1

Tk



 uk+1 uk
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Verify numerically that the largest eigenvalue of  isA

Out[14]: ([1.0, 3.0], [-0.707107 0.707107; 0.707107 0.707107])

Out[3]: 1×15 RowVector{Int64,Array{Int64,1}}:
 0  0  1  1  2  4  7  13  24  44  81  149  274  504  927

Out[3]: 3×3 Array{Int64,2}:
 1  1  1
 1  0  0
 0  1  0

A = [2 1 ; 1 2]
eig(A)

# Inefficient but straightforward computation
T(n) = n>3 ? T(n-1)+T(n-2)+T(n-3) : n==3 ? 1 : 0
[T(n) for n=1:15]'

M = [ 1 2 3; 4 5 6; 7 8 9] # Template for a 3x3 matrix
A = [1 1 1 ; 1 0 0 ; 0 1 0]                     # Write the correct numbers
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and the other two eigenvalues have absolute value less than 1.

In [5]:

Explain why T(31)/T(30) should be about ϕ

Answer:  is the first entry of the vector , i.e. , and if  is the

matrix of eigenvectors and  are the other two eigenvalues, we have

. The idea is that if  is large, the (absolute value of the) powers

 are negligible, and so this can be approximated by

 where  is

the first entry of the vector . So .

T(k + 3) =uk+1 Aku1 T(k + 3) = eT1Aku1 X
,λ2 λ3

= XeT1A
ku1 eT1




ϕ

λ2

λ3




k

X−1u1 k

,λk2 λk3

X = [ ] = (eT1




ϕ

0
0




k

X−1u1 x11 x12 x13





(ϕk X−1u1)1
0
0



 x11ϕk X−1u1)1 (X−1u1)1

X−1u1 T(k + 3)/T(k + 2) ≈ = ϕ(x11ϕk X−1u1)1
(x11ϕk−1 X−1u1)1
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Using Julia, expand u₁ in an eigenvector basis obtaining the coefficients c.

(Two of which are complex, and one may have roundoff as an imaginary part.)

In [4]:

In [8]:

Answer: This is essentially what we showed above, except we now have the notation . Setting

 above, we have .

c = X−1u1
k = 15 T(18) = x11ϕ15c1

A student wishes to approximate the 18th Tribonacci number.

Explain why the above expression is correct, including the role played by c[1], X[1,1], 15, and 18.

Out[4]: 1.8392867552141612

Out[5]: 3-element Array{Float64,1}:
 1.83929 
 0.737353
 0.737353

Out[6]: 1.839286755221798

Out[4]: 3-element Array{Complex{Float64},1}:
 -0.727262+2.44804e-17im
 -0.123959+0.46185im    
 -0.123959-0.46185im    

Out[8]: (5767.998305699344, 5768)

ϕ = (1+∛(19+3*√33)+∛(19-3*√33))/3

abs.(eigvals(A))

T(31)/T(30)

Λ,X = eig(A) # Λ is a vector of eigenvalues in Julia for efficiency
c = X\[1,0,0]

real(c[1]*X[1,1]*ϕ^15),T(18)
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In [10]:

The above formula is the exact error to the student's approximation. Explain.

Answer: Using the expression above we have:

The real part of the first term is our approximation, and the error is . Since  is real

(actually, it's an integer), . So all that is left is to show

that

and this follows from the claim that  is the complex conjugate of . To see that these are

complex conjugates, first note that  is the complex conjugate of  (because , , and  form the three

roots of a cubic polynomial and  is real, so ( ) is a pair of complex conjugates).  and  are real, as

they are the entries of the eigenvector corresponding to , which is real. Finally, you can observe that :

T(18) = X = [ ] c = + +eT1




ϕ

λ2

λ3




15

X−1u1 x11 x12 x13




ϕ

λ2

λ3




15

x11ϕ
15c1 x12λ152 c2

+x12λ152 c2 x13λ153 c3 T(18)
T(18) − Re( ) = Re( + )x11ϕ15c1 x12λ152 c2 x13λ153 c3

Re( + ) = 2Re( )x12λ152 c2 x13λ153 c3 x12λ152 c2
x12λ152 c2 x13λ153 c3
λ2 λ3 ϕ λ2 λ3

ϕ ,λ2 λ3 x12 x13
ϕ =c2 c3̄
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3) For a square nxn matrix A, one variation of the singular value decomposition has , with all

matrices square nxn, and  is diagonal with  (The number of 0 singular values is

n-r.)

What is the relationship between the product of the eigenvalues and the product of these n singular values of

?

A = UΣVT
Σ ≥ ≥. . . ≥ ≥ 0.σ1 σ2 σn

A

Answer: The product of the eigenvalues of a square matrix  is . I claim that the product of the singular

values is : first note that  since 

and  are orthogonal matrices (hence have determinant = ). Furthermore, the entries of  are all

nonnegative, so this forces the sign.

A det(A)
| det(A)| det(A) = det(UΣ ) = det(U) det(Σ) det( ) = ± det(Σ)VT V T U

V ±1 Σ

4) If a matrix has eigenvalue 1, must it have singular value 1? If a matrix has eigenvalue 0, must it have

singular value 0?

Answer: For 1, the answer is "no"; take, for example, the matrix . It has eigenvalue 1 because it is

upper triangular with 1 and 0 on the diagonal, but 1 is not a singular value:

[ ]1
0

1
0

Out[9]: 0.0016943006557994522

Out[10]: 0.0016943006593527162

Out[5]: 3-element Array{Complex{Float64},1}:
 -0.727262+2.44804e-17im
 -0.123959+0.46185im    
 -0.123959-0.46185im    

T(18) - real(c[1]*X[1,1]*ϕ^15)

2 * real(c[2]*X[1,2]*Λ[2]^15 ) 

c
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This does work for 0, however: a square matrix has eigenvalue 0 if and only if it is singular (non-invertible), and

a matrix is singular if and only if 0 is one of its singular values (in the square case, in the decomposition

, both  and  are invertible, so  is invertible if and only if  is invertible).A = UΣVT U VT A Σ

5) Supose rank(A) = n-1 and x is an eigenvector with eigenvalue 0. How might the information in x find itself

inside the SVD?

Answer: Eigenvectors corresponding to the eigenvalue 0 are just (nonzero) vectors in . Since

,  by the rank-nullity theorem. So  spans . It follows from what you

showed on pset 4 that the first  columns of  are an orthonormal basis for ; since  is orthogonal,

the last column must be orthogonal to this, i.e. a basis for . Applying this reasoning to , we

see that the last column of  is a unit vector that is a basis for , and so it must be .

N(A)
rank(A) = n − 1 dimN(A) = 1 x N(A)

n − 1 U C(A) U
N( )AT = VΣAT UT

V N(A) x/‖x‖

6) Construct for every n=2,3,... a non-zero matrix A that has all eigenvalues 0, but has (n-1) singular values 1.

Is A diagonalizible?

Answer: Use the  matrix

This has all zero eigenvalues: just read off the diagonal values. The SVD has ,  the diagonal matrix

with diagonal entries  and

 is not diagonalizable: it has just one eigenvalue (0) with multiplicity , so in order for it to be diagonalizable

the corresponding eigenspace would have to have dimension . But  so eigenspace is  and

 implies .

n × n

A =







0 1
0 1

0 1
⋱ ⋱

0 1
0






U = I Σ =

1,… , 1, 0

=VT







0

1

1
0 1

0 1
⋱ ⋱

0 1
0






A n

n λ = 0 N(A)
rank(A) = n − 1 dimN(A) = 1

7) Write an expression for  in terms of the svd of A. Use this to relate the singular values of  to the

eigenvalues of . Do the same for .

AAT A
AAT AAT

Out[3]: ([1.0 0.0; 0.0 1.0], [1.41421, 0.0], [0.707107 -0.707107; 0.707107 0.707107])

A = [1 1 ; 0 0]
svd(A)
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Answer: Using the fact that  we have

Since , this is a diagonalization of : the eigenvalues are the diagonal entries of  (namely 

for every ) and the corresponding eigenvectors are the columns of . For the  part, replace  with  in

the above:  is a diagonalization of  whose eigenvalues are the 's, and eigenvectors are

the columns of .

= ΣΣT
A = (UΣ (UΣ ) = V UΣ = V .AT V T )T V T ΣTUT V T Σ2VT

=VT V −1 AT Σ2 σ2i
i V AAT A AT

A = UAT Σ2UT U σ2i
U
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