1) Use eigenvalues to compute a formula for
$A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)^{k}$

In [14]: $A=[21 ; 12]$
eig(A)
Out[14]: ([1.0, 3.0], [-0.707107 0.707107; 0.707107 0.707107])

Answer: First we diagonalize $B=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$: the characteristic polynomial is $\operatorname{det}(B-\lambda I)=(2-\lambda)^{2}-1=3-4 \lambda+\lambda^{2}=(\lambda-1)(\lambda-3)$ so the eigenvalues are 1 and 3 . The eigenvector for $\lambda=1$ is a basis vector for $N(B-I)=N\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)$ which we can take to be $v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ (note the julia above gives the normalized form). The eigenvector for $\lambda=3$ is a basis vector for $N(B-3 I)=N\left(\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]\right)$ which can be taken to be $v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. So we can diagonalize B as

$$
B=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]^{-1}
$$

and so

$$
\begin{aligned}
A=B^{k} & =\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 3
\end{array}\right]^{k}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 3^{k}
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
3^{k} / 2 & 3^{k} / 2
\end{array}\right]=\left[\begin{array}{cc}
1 / 2+3^{k} / 2 & -1 / 2+3^{k} / 2 \\
-1 / 2+3^{k} / 2 & 1 / 2+3^{k} / 2
\end{array}\right]
\end{aligned}
$$

2) The Tribonacci numbers are defined in analogy to the Fibonacci numbers:
$T_{1}=T_{2}=0, T_{3}=1$,
$T_{n}=T_{n-1}+T_{n-2}+T_{n-3}($ for $n>3$)

In [3]: \# Inefficient but straightforward computation
$T(n)=n>3$? $T(n-1)+T(n-2)+T(n-3): n==3$? 1 : 0
[T(n) for $n=1: 15]$ '
Out[3]: 1×15 RowVector\{Int64,Array\{Int64,1\}\}:
$\begin{array}{lllllllllllllll}0 & 0 & 1 & 1 & 2 & 4 & 7 & 13 & 24 & 44 & 81 & 149 & 274 & 504 & 927\end{array}$

Let $u_{k}=\left(\begin{array}{c}T_{k+2} \\ T_{k+1} \\ T_{k}\end{array}\right)$. Find a matrix A that relates u_{k+1} to u_{k}

In [3]: $M=[123 ; 456 ; 789]$ \# Template for a 3×3 matrix
$A=[111 ; 100 ; 010]$ \# Write the correct numbers
Out[3]: 3×3 Array\{Int64,2\}:

1	1	1
1	0	0
0	1	0

Verify numerically that the largest eigenvalue of A is

In [4]: $\phi=(1+\sqrt[3]{ }(19+3 * \sqrt{ } 33)+\sqrt[3]{ }(19-3 * \sqrt{ } 33)) / 3$

Out[4]: 1.8392867552141612

and the other two eigenvalues have absolute value less than 1 .

In [5]: abs.(eigvals(A))
Out[5]: 3-element Array\{Float64,1\}:
1.83929
0.737353
0.737353

Explain why $T(31) / T(30)$ should be about ϕ

Answer: $T(k+3)$ is the first entry of the vector $u_{k+1}=A^{k} u_{1}$, i.e. $T(k+3)=e_{1}^{T} A^{k} u_{1}$, and if X is the matrix of eigenvectors and λ_{2}, λ_{3} are the other two eigenvalues, we have
$e_{1}^{T} A^{k} u_{1}=e_{1}^{T} X\left[\begin{array}{llll}\phi & & & \\ & \lambda_{2} & & \\ & & \lambda_{3}\end{array}\right]^{k} X_{1}$. The idea is that if k is large, the (absolute value of the) powers
$\lambda_{2}^{k}, \lambda_{3}^{k}$ are negligible, and so this can be approximated by
$e_{1}^{T} X\left[\begin{array}{ccc}\phi & & \\ & 0 & \\ & & 0\end{array}\right]^{k} X^{-1} u_{1}=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13}\end{array}\right]\left[\begin{array}{c}\phi^{k}\left(X^{-1} u_{1}\right)_{1} \\ 0 \\ 0\end{array}\right]=x_{11} \phi^{k}\left(X^{-1} u_{1}\right)_{1}$ where $\left(X^{-1} u_{1}\right)_{1}$ is the first entry of the vector $X^{-1} u_{1}$. So $T(k+3) / T(k+2) \approx \frac{x_{11} \phi^{k}\left(X^{-1} u_{1}\right)_{1}}{x_{11} \phi^{k-1}\left(X^{-1} u_{1}\right)_{1}}=\phi$.

In [6]: $\mathrm{T}(31) / \mathrm{T}(30)$
Out[6]: 1.839286755221798

Using Julia, expand u_{1} in an eigenvector basis obtaining the coefficients c.
(Two of which are complex, and one may have roundoff as an imaginary part.)

In [4]: $\Lambda, X=\operatorname{eig}(A) \# \Lambda$ is a vector of eigenvalues in Julia for efficiency $c=X \backslash[1,0,0]$
Out[4]: 3-element Array\{Complex\{Float64\},1\}:
$-0.727262+2.44804 e-17 i m$
-0.123959+0.46185im
-0.123959-0.46185im

In [8]: $\operatorname{real}\left(c[1] * X[1,1] * \phi^{\wedge} 15\right), T(18)$
Out[8]: (5767.998305699344, 5768)

Answer: This is essentially what we showed above, except we now have the notation $c=X^{-1} u_{1}$. Setting $k=15$ above, we have $T(18)=x_{11} \phi^{15} c_{1}$.

A student wishes to approximate the 18th Tribonacci number.
Explain why the above expression is correct, including the role played by $\mathrm{c}[1], \mathrm{X}[1,1], 15$, and 18 .

```
In [9]: T(18) - real(c[1]*X[1,1]*\mp@subsup{\phi}{}{\wedge}15)
Out[9]: 0.0016943006557994522
In [10]: 2 * real(c[2]*X[1,2]*^[2]^15 )
Out[10]: 0.0016943006593527162
```

The above formula is the exact error to the student's approximation. Explain.

Answer: Using the expression above we have:
$T(18)=e_{1}^{T} X\left[\begin{array}{lll}\phi & & \\ & \lambda_{2} & \\ & & \lambda_{3}\end{array}\right]^{15} X^{-1} u_{1}=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13}\end{array}\right]\left[\begin{array}{lll}\phi & & \\ & \lambda_{2} & \\ & & \lambda_{3}\end{array}\right]^{15} c=x_{11} \phi^{15} c_{1}+x_{12} \lambda_{2}^{15} c_{2}-1$ The real part of the first term is our approximation, and the error is $x_{12} \lambda_{2}^{15} c_{2}+x_{13} \lambda_{3}^{15} c_{3}$. Since $T(18)$ is real (actually, it's an integer), $T(18)-\operatorname{Re}\left(x_{11} \phi^{15} c_{1}\right)=\operatorname{Re}\left(x_{12} \lambda_{2}^{15} c_{2}+x_{13} \lambda_{3}^{15} c_{3}\right)$. So all that is left is to show that

$$
\operatorname{Re}\left(x_{12} \lambda_{2}^{15} c_{2}+x_{13} \lambda_{3}^{15} c_{3}\right)=2 \operatorname{Re}\left(x_{12} \lambda_{2}^{15} c_{2}\right)
$$

and this follows from the claim that $x_{12} \lambda_{2}^{15} c_{2}$ is the complex conjugate of $x_{13} \lambda_{3}^{15} c_{3}$. To see that these are complex conjugates, first note that λ_{2} is the complex conjugate of λ_{3} (because ϕ, λ_{2}, and λ_{3} form the three roots of a cubic polynomial and ϕ is real, so (λ_{2}, λ_{3}) is a pair of complex conjugates). x_{12} and x_{13} are real, as they are the entries of the eigenvector corresponding to ϕ, which is real. Finally, you can observe that $c_{2}=\overline{c_{3}}$:

In [5]:
c
Out[5]: 3-element Array\{Complex\{Float64\},1\}:
-0.727262+2.44804e-17im
-0.123959+0.46185im
-0.123959-0.46185im
3) For a square $n x n$ matrix A , one variation of the singular value decomposition has $A=U \Sigma V^{T}$, with all matrices square $n \times n$, and Σ is diagonal with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$. (The number of 0 singular values is $n-r$.

What is the relationship between the product of the eigenvalues and the product of these n singular values of A?

Answer: The product of the eigenvalues of a square matrix A is $\operatorname{det}(A)$. I claim that the product of the singular values is $|\operatorname{det}(A)|$: first note that $\operatorname{det}(A)=\operatorname{det}\left(U \Sigma V^{T}\right)=\operatorname{det}(U) \operatorname{det}(\Sigma) \operatorname{det}\left(V^{T}\right)= \pm \operatorname{det}(\Sigma)$ since U and V are orthogonal matrices (hence have determinant $= \pm 1$). Furthermore, the entries of Σ are all nonnegative, so this forces the sign
4) If a matrix has eigenvalue 1 , must it have singular value 1 ? If a matrix has eigenvalue 0 , must it have singular value 0 ?

Answer: For 1, the answer is "no"; take, for example, the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. It has eigenvalue 1 because it is upper triangular with 1 and 0 on the diagonal, but 1 is not a singular value:

```
In [3]: A = [1 1 ; 0 0]
svd(A)
```

Out[3]: ([1.0 0.0; 0.0 1.0], [1.41421, 0.0], [0.707107-0.707107; 0.707107 0.707107])

This does work for 0 , however: a square matrix has eigenvalue 0 if and only if it is singular (non-invertible), and a matrix is singular if and only if 0 is one of its singular values (in the square case, in the decomposition $A=U \Sigma V^{T}$, both U and V^{T} are invertible, so A is invertible if and only if Σ is invertible).
5) Supose $\operatorname{rank}(A)=n-1$ and x is an eigenvector with eigenvalue 0 . How might the information in x find itself inside the SVD?

Answer: Eigenvectors corresponding to the eigenvalue 0 are just (nonzero) vectors in $N(A)$. Since $\operatorname{rank}(A)=n-1, \operatorname{dim} N(A)=1$ by the rank-nullity theorem. So x spans $N(A)$. It follows from what you showed on pset 4 that the first $n-1$ columns of U are an orthonormal basis for $C(A)$; since U is orthogonal, the last column must be orthogonal to this, i.e. a basis for $N\left(A^{T}\right)$. Applying this reasoning to $A^{T}=V \Sigma U^{T}$, we see that the last column of V is a unit vector that is a basis for $N(A)$, and so it must be $x /\|x\|$.
6) Construct for every $n=2,3, \ldots$ a non-zero matrix A that has all eigenvalues 0 , but has ($n-1$) singular values 1 . Is A diagonalizible?

Answer: Use the $n \times n$ matrix

$$
A=\left[\begin{array}{llllll}
0 & 1 & & & & \\
& 0 & 1 & & & \\
& & 0 & 1 & & \\
& & & \ddots & \ddots & \\
& & & & 0 & 1 \\
& & & & & 0
\end{array}\right]
$$

This has all zero eigenvalues: just read off the diagonal values. The SVD has $U=I, \Sigma=$ the diagonal matrix with diagonal entries $1, \ldots, 1,0$ and

$$
V^{T}=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
& 0 & 1 & & & \\
& & 0 & 1 & & \\
& & & \ddots & \ddots & \\
& & & & 0 & 1 \\
1 & & & & & 0
\end{array}\right]
$$

A is not diagonalizable: it has just one eigenvalue (0) with multiplicity n, so in order for it to be diagonalizable the corresponding eigenspace would have to have dimension n. But $\lambda=0$ so eigenspace is $N(A)$ and $\operatorname{rank}(A)=n-1$ implies $\operatorname{dim} N(A)=1$.
7) Write an expression for $A^{T} A$ in terms of the svd of A . Use this to relate the singular values of A to the eigenvalues of $A^{T} A$. Do the same for $A A^{T}$.

Answer: Using the fact that $\Sigma^{T}=\Sigma$ we have

$$
A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

Since $V^{T}=V^{-1}$, this is a diagonalization of A^{T} : the eigenvalues are the diagonal entries of Σ^{2} (namely σ_{i}^{2} for every i) and the corresponding eigenvectors are the columns of V. For the $A A^{T}$ part, replace A with A^{T} in the above: $A A^{T}=U \Sigma^{2} U^{T}$ is a diagonalization of U whose eigenvalues are the σ_{i}^{2} 's, and eigenvectors are the columns of U.

