
PSET 6. SOLUTIONS

Problem 1. Since A = QR is upper-triangular and R is upper-triangular we get that the result of
orthogonalization Q = AR−1 is upper-triangular as well (since the inverse of an upper-triangular matrix
is upper-triangular and the product of two upper-triangular matrices is again upper-triangular). Q is or-
thonormal, so QTQ = I. Rewriting this as QT = Q−1 we get that QT is also upper-triangular. It follows
that Q is diagonal:

Q =


x1 0 · · · 0
0 x2 · · · 0
· · · · · · · · · · · ·
0 0 · · · xn


But we know QTQ = I, so x2i = 1 for each i. It means that Q is diagonal with the diagonal entries being
±1.

Problem 2. A = QR, A is Hessenberg, R−1 is upper-triangular since R is and Q = AR−1 is a product
of a Hessenberg matrix and upper-triangular matrix which is again Hessenberg. So Q is Hessenberg.

Problem 3. No, it does not. Say you added x to the top-right corner. The lowest row has all elements
being 0 except (possibly) the last (rightmost) one. If it is zero as well, then we have a row full of zeros and
the determinant is 0 both before and after adding x. If it is not zero and is equal to some ann, then we can
take the lowest row, multiply it by −x · a−1nn and add to the first row. This will undo the addition of x and
so the determinants are equal.

Problem 4. Let

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
0 a32 a33 · · · a3n
· · · · · · · · · · · · · · ·
0 0 · · · ann−1 ann


be our Hessenberg matrix and let’s consider also a matrix A′ where we replace the first row with

[
0 0 . . . 0 x

]
:

A′ =


0 0 0 · · · x
a21 a22 a23 · · · a2n
0 a32 a33 · · · a3n
· · · · · · · · · · · · · · ·
0 0 · · · ann−1 ann


In the matrix where we add x to top right corner of A is all rows except the top one stay the same as in A
and the top one is the sum of top rows of A and A′. From the properties of the determinant it follows that
the determinant of this matrix is detA+ detA′. In other words the determinant changes exactly on detA′,
so we need to compute it.

For this we swap the first row with second one, second with third and so on, until the top row becomes
the bottom row; each swap changes the sign of the determinant and together we made n− 1 swaps. So we
get

det(A′) = (−1)n−1 · det


a21 a22 a23 · · · a2n
0 a32 a33 · · · a3n
· · · · · · · · · · · · · · ·
0 0 · · · ann−1 ann
0 0 0 · · · x


and the last determinant is easy to compute: it is just a21a32 . . . ann−1x. Answer: If we change the top
right entry by x the determinant will change on x times the product of terms on the diagonal below the
main one.



Problem 5. We would like to find a vector w such that the sum
∑

i ‖wTxi + b− yi ‖2 is minimal. This
can be reformulated using linear algebra: we need to look at

X ·


b
w1

w2

· · ·
wn

 =


y1
y2
· · ·
yn


Indeed the rows of the product are exactly of the form wTxi + b and so we are are trying to find the
least-squares approximation X · z to y (where y is the vector of yi’s)

Problem 6. This is not always invertible. Just take A to be a row vector with length n > 1 (say
A =

[
1 1

]
), then the rows are independent (since there is only one) and ATA is of size n × n and is a

product of a column vector on a row vector, so has rank 1 (ATA =

[
1 1
1 1

]
: not invertible).

Problem 7. a) Q =

[
1
0

]
, then QQT =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
6= I

b) Take v1 to be any vector and v2 = 0. Then v1 is orthogonal to v2: vT
1 v2 = 0. But they are linearly

independent

c) Take q1 =


1√
3
1√
3
1√
3

, q2 =


2√
6
−1√
6
−1√
6

, q3 =

 0
1√
2
−1√
2

, then qT
1 q1 = ( 1√

3
)2 + ( 1√

3
)2 + ( 1√

3
)2 = 1, qT

1 q2 =

1√
3

2√
6
− 1√

3
1√
6
− 1√

3
1√
6

= 0, qT
1 q3 = 1√

3
1√
2
− 1√

3
1√
2

= 0, qT
2 q2 = ( 2√

6
)2 + (−1√

6
)2 + (−1√

6
)2 = 6

6 = 1,

qT
2 q3 = −1√

6
1√
2

+ 1√
6

1√
2
, qT

3 q3 = ( 1√
2
)2 + ( 1√

2
)2 = 1

Problem 8. We proceed step by step:

q1 =
a

||a||
=


1√
2
−1√
2

0
0

 , then u2 = b− (qT
1 b)q1 =


0
1
−1
0

+
1√
2


1√
2
−1√
2

0
0

 =


1
2
1
2
−1
0



q2 =
u2

||u2||
=


1√
6
1√
6
−2√
6

0

 , next step u3 = c− (qT
1 c)q1 − (qT

2 c)q2 =


0
0
1
−1

− 0 ·


1√
2
−1√
2

0
0

+
2√
6


1√
6
1√
6
−2√
6

0

 =


1
3
1
3
1
3
−1



q3 =
u3

||u3||
=


1

2
√
3

1
2
√
3

1
2
√
3

−3
2
√
3


Since the span of a, b and c is equal to the span of q1, q2 and q3 it is enough to find a vector perpendicular

to a, b and c. Since the sum of coordinates for any of these vectors is 0 we can take d =


1
1
1
1

 (dot product

with d is exactly the sum of coordinates).
Problem 9. It is not true that Q = U for example because the first column vector of A (which up

to scalar is the first column of Q) is not necessarily the first left-singular vector (which should be a vector



whose length increases the most). As a particular example let’s take A =

1 1 1
0 1 1
0 0 1

, then Q = I and

U =

0.7370 0.5910 0.3280
0.5910 −0.3280 −0.7370
0.3280 −0.7370 0.5910

.

Considering the second part, since Q and U are orthogonal, the square n × n-matrices UUT and QQT

are projections on the column space of U and Q correspondingly. So if column vectors of A are linearly
independent, all singular values are non-zero, the column spaces of U, A and consequently Q coincide. It
follows that UUT and QQT are projections on the same subspace and so are equal.

Problem 10. The i-th column of matrix M has coordinates (−1)i−1, (−1+h)i−1, , (−1+2h)i−1, . . . , (1−
h)i−1, 1i−1. When we take the dot product of i-th column with j-th one we get the sum (−1)i−1 · (−1)j−1 +
(−1 + h)i−1 · (−1 + h)j−1 + (−1 + 2h)i−1 · (−1 + 2h)j−1 + . . .+ (1)i−1 · (1)j−1 which is almost the integral∫ 1

−1 x
i−1xj−1dx except that to approximate the integral (by the sum of areas of rectangles with horizontal

side h sitting under the graph) we need to multiply the sum above by h. This means that the dot product
of columns of the matrix M is (almost) equal to the scalar products of polynomials of the forms xi which

given by (p(x), q(x)) = 1
h

∫ 1

−1 p(x)q(x)dx. Now we orthogonolize M obtaining Q, take qn and express it as
a linear combination of m1, . . . ,mn: qn = a1m1 + a2m2 + . . .+ anmn. Returning to the comparison of the
integral and scalar product, the polynomials Ln(x) = a1 +a2x+ . . .+anx

n−1 will be (almost) orthogonal to

each other and we will also have
∫ 1

−1 Lk(x)Lk(x)dx ≈ h. This means Lk(x) are very close to be the Legendre

polynomials except that the length
∫ 1

−1 Lk(x)Lk(x)dx is not 1, but h. This is easily improved by dividing

all vectors by
√
h and this is why it is done in the program code.

Problem 11. It is enough to show that the null-space of XTX+λI is 0. Let’s suppose there is a non-zero
vector v such that (XTX + λI)v = 0. Then XTXv = −λv. Let’s multiply both sides on vT on the left,
then we will get vTXTXv = −λvTv. The left side is (Xv)T (Xv) and so is nonnegative (it can be 0 if
Xv = 0), while vTv = ||v||2 is strictly positive and so (using λ > 0) −λvTv is strictly negative and we get
a contradiction. So XTX + λI is invertible.


