PSET 6. SOLUTIONS

Problem 1. Since $\mathbf{A}=\mathbf{Q R}$ is upper-triangular and \mathbf{R} is upper-triangular we get that the result of orthogonalization $\mathbf{Q}=\mathbf{A R} \mathbf{R}^{-1}$ is upper-triangular as well (since the inverse of an upper-triangular matrix is upper-triangular and the product of two upper-triangular matrices is again upper-triangular). \mathbf{Q} is orthonormal, so $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$. Rewriting this as $\mathbf{Q}^{T}=\mathbf{Q}^{-1}$ we get that \mathbf{Q}^{T} is also upper-triangular. It follows that \mathbf{Q} is diagonal:

$$
\mathbf{Q}=\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

But we know $\mathbf{Q}^{T} \mathbf{Q}=I$, so $x_{i}^{2}=1$ for each i. It means that \mathbf{Q} is diagonal with the diagonal entries being ± 1.

Problem 2. $\mathbf{A}=\mathbf{Q R}, \mathbf{A}$ is Hessenberg, \mathbf{R}^{-1} is upper-triangular since \mathbf{R} is and $\mathbf{Q}=\mathbf{A} \mathbf{R}^{-1}$ is a product of a Hessenberg matrix and upper-triangular matrix which is again Hessenberg. So \mathbf{Q} is Hessenberg.

Problem 3. No, it does not. Say you added x to the top-right corner. The lowest row has all elements being 0 except (possibly) the last (rightmost) one. If it is zero as well, then we have a row full of zeros and the determinant is 0 both before and after adding x. If it is not zero and is equal to some $a_{n n}$, then we can take the lowest row, multiply it by $-x \cdot a_{n n}^{-1}$ and add to the first row. This will undo the addition of x and so the determinants are equal.

Problem 4. Let

$$
\mathbf{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n n-1} & a_{n n}
\end{array}\right]
$$

be our Hessenberg matrix and let's consider also a matrix \mathbf{A}^{\prime} where we replace the first row with $\left[\begin{array}{llllll}0 & 0 & \ldots & 0 & x\end{array}\right]$:

$$
\mathbf{A}^{\prime}=\left[\begin{array}{ccccc}
0 & 0 & 0 & \cdots & x \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n n-1} & a_{n n}
\end{array}\right]
$$

In the matrix where we add x to top right corner of \mathbf{A} is all rows except the top one stay the same as in \mathbf{A} and the top one is the sum of top rows of \mathbf{A} and \mathbf{A}^{\prime}. From the properties of the determinant it follows that the determinant of this matrix is $\operatorname{det} \mathbf{A}+\operatorname{det} \mathbf{A}^{\prime}$. In other words the determinant changes exactly on $\operatorname{det} \mathbf{A}^{\prime}$, so we need to compute it.

For this we swap the first row with second one, second with third and so on, until the top row becomes the bottom row; each swap changes the sign of the determinant and together we made $n-1$ swaps. So we get

$$
\operatorname{det}\left(\mathbf{A}^{\prime}\right)=(-1)^{n-1} \cdot \operatorname{det}\left[\begin{array}{ccccc}
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n n-1} & a_{n n} \\
0 & 0 & 0 & \cdots & x
\end{array}\right]
$$

and the last determinant is easy to compute: it is just $a_{21} a_{32} \ldots a_{n n-1} x$. Answer: If we change the top right entry by x the determinant will change on x times the product of terms on the diagonal below the main one.

Problem 5. We would like to find a vector \mathbf{w} such that the sum $\sum_{i}\left\|\mathbf{w}^{T} \mathbf{x}_{i}+b-y_{i}\right\|^{2}$ is minimal. This can be reformulated using linear algebra: we need to look at

$$
\mathbf{X} \cdot\left[\begin{array}{c}
b \\
w_{1} \\
w_{2} \\
\cdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right]
$$

Indeed the rows of the product are exactly of the form $\mathbf{w}^{T} \mathbf{x}_{i}+b$ and so we are are trying to find the least-squares approximation $\mathbf{X} \cdot \mathbf{z}$ to \mathbf{y} (where \mathbf{y} is the vector of y_{i} 's)

Problem 6. This is not always invertible. Just take A to be a row vector with length $n>1$ (say $A=\left[\begin{array}{ll}1 & 1\end{array}\right]$), then the rows are independent (since there is only one) and $\mathbf{A}^{T} \mathbf{A}$ is of size $n \times n$ and is a product of a column vector on a row vector, so has rank $1\left(\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right.$: not invertible).

Problem 7. a) $\mathbf{Q}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then $\mathbf{Q Q}^{T}=\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{ll}1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \neq \mathbf{I}$
b) Take \mathbf{v}_{1} to be any vector and $\mathbf{v}_{2}=0$. Then \mathbf{v}_{1} is orthogonal to $\mathbf{v}_{2}: \mathbf{v}_{1}^{T} \mathbf{v}_{2}=0$. But they are linearly independent
c) Take $\mathbf{q}_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right], \mathbf{q}_{2}=\left[\begin{array}{c}\frac{2}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}}\end{array}\right], \mathbf{q}_{3}=\left[\begin{array}{c}0 \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right]$, then $\mathbf{q}_{1}^{T} \mathbf{q}_{1}=\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}=1, \mathbf{q}_{1}^{T} \mathbf{q}_{2}=$ $\frac{1}{\sqrt{3}} \frac{2}{\sqrt{6}}-\frac{1}{\sqrt{3}} \frac{1}{\sqrt{6}}-\frac{1}{\sqrt{3}} \frac{1}{\sqrt{6}}=0, \mathbf{q}_{1}^{T} \mathbf{q}_{3}=\frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}}=0, \mathbf{q}_{2}^{T} \mathbf{q}_{2}=\left(\frac{2}{\sqrt{6}}\right)^{2}+\left(\frac{-1}{\sqrt{6}}\right)^{2}+\left(\frac{-1}{\sqrt{6}}\right)^{2}=\frac{6}{6}=1$, $\mathbf{q}_{2}^{T} \mathbf{q}_{3}=\frac{-1}{\sqrt{6}} \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{6}} \frac{1}{\sqrt{2}}, \mathbf{q}_{3}^{T} \mathbf{q}_{3}=\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}=1$

Problem 8. We proceed step by step:

$$
\begin{gathered}
\mathbf{q}_{1}=\frac{\mathbf{a}}{\|\mathbf{a}\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} \\
0 \\
0
\end{array}\right], \text { then } \mathbf{u}_{2}=\mathbf{b}-\left(\mathbf{q}_{1}^{T} \mathbf{b}\right) \mathbf{q}_{1}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-1 \\
0
\end{array}\right] \\
\mathbf{q}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{-2}{\sqrt{6}} \\
0
\end{array}\right], \text { next step } \mathbf{u}_{3}=\mathbf{c}-\left(\mathbf{q}_{1}^{T} \mathbf{c}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{T} \mathbf{c}\right) \mathbf{q}_{2}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right]-0 \cdot\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} \\
0 \\
0
\end{array}\right]+\frac{2}{\sqrt{6}}\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{-2}{\sqrt{6}} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3} \\
-1
\end{array}\right] \\
\mathbf{q}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}=\left[\begin{array}{c}
\frac{1}{2 \sqrt{3}} \\
\frac{1}{2 \sqrt{3}} \\
\frac{1}{2 \sqrt{3}} \\
\frac{-3}{2 \sqrt{3}}
\end{array}\right]
\end{gathered}
$$

Since the span of \mathbf{a}, \mathbf{b} and \mathbf{c} is equal to the span of $\mathbf{q}_{1}, \mathbf{q}_{2}$ and \mathbf{q}_{3} it is enough to find a vector perpendicular to \mathbf{a}, \mathbf{b} and \mathbf{c}. Since the sum of coordinates for any of these vectors is 0 we can take $\mathbf{d}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ (dot product with \mathbf{d} is exactly the sum of coordinates).

Problem 9. It is not true that $\mathbf{Q}=\mathbf{U}$ for example because the first column vector of \mathbf{A} (which up to scalar is the first column of \mathbf{Q}) is not necessarily the first left-singular vector (which should be a vector
whose length increases the most). As a particular example let's take $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$, then $\mathbf{Q}=\mathbf{I}$ and $\mathbf{U}=\left[\begin{array}{ccc}0.7370 & 0.5910 & 0.3280 \\ 0.5910 & -0.3280 & -0.7370 \\ 0.3280 & -0.7370 & 0.5910\end{array}\right]$.

Considering the second part, since \mathbf{Q} and \mathbf{U} are orthogonal, the square $n \times n$-matrices $\mathbf{U} \mathbf{U}^{T}$ and $\mathbf{Q Q}^{T}$ are projections on the column space of \mathbf{U} and \mathbf{Q} correspondingly. So if column vectors of \mathbf{A} are linearly independent, all singular values are non-zero, the column spaces of \mathbf{U}, \mathbf{A} and consequently \mathbf{Q} coincide. It follows that $\mathbf{U U}^{T}$ and $\mathbf{Q} \mathbf{Q}^{T}$ are projections on the same subspace and so are equal.

Problem 10. The i-th column of matrix M has coordinates $(-1)^{i-1},(-1+h)^{i-1},,(-1+2 h)^{i-1}, \ldots,(1-$ $h)^{i-1}, 1^{i-1}$. When we take the dot product of i-th column with j-th one we get the sum $(-1)^{i-1} \cdot(-1)^{j-1}+$ $(-1+h)^{i-1} \cdot(-1+h)^{j-1}+(-1+2 h)^{i-1} \cdot(-1+2 h)^{j-1}+\ldots+(1)^{i-1} \cdot(1)^{j-1}$ which is almost the integral $\int_{-1}^{1} x^{i-1} x^{j-1} d x$ except that to approximate the integral (by the sum of areas of rectangles with horizontal side h sitting under the graph) we need to multiply the sum above by h. This means that the dot product of columns of the matrix M is (almost) equal to the scalar products of polynomials of the forms x^{i} which given by $(p(x), q(x))=\frac{1}{h} \int_{-1}^{1} p(x) q(x) d x$. Now we orthogonolize \mathbf{M} obtaining \mathbf{Q}, take \mathbf{q}_{n} and express it as a linear combination of $\mathbf{m}_{1}, \ldots, \mathbf{m}_{n}: \mathbf{q}_{n}=a_{1} \mathbf{m}_{1}+a_{2} \mathbf{m}_{2}+\ldots+a_{n} \mathbf{m}_{n}$. Returning to the comparison of the integral and scalar product, the polynomials $L_{n}(x)=a_{1}+a_{2} x+\ldots+a_{n} x^{n-1}$ will be (almost) orthogonal to each other and we will also have $\int_{-1}^{1} L_{k}(x) L_{k}(x) d x \approx h$. This means $L_{k}(x)$ are very close to be the Legendre polynomials except that the length $\int_{-1}^{1} L_{k}(x) L_{k}(x) d x$ is not 1 , but h. This is easily improved by dividing all vectors by \sqrt{h} and this is why it is done in the program code.

Problem 11. It is enough to show that the null-space of $\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}$ is 0 . Let's suppose there is a non-zero vector \mathbf{v} such that $\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \mathbf{v}=0$. Then $\mathbf{X}^{T} \mathbf{X} \mathbf{v}=-\lambda \mathbf{v}$. Let's multiply both sides on \mathbf{v}^{T} on the left, then we will get $\mathbf{v}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{v}=-\lambda \mathbf{v}^{T} \mathbf{v}$. The left side is $(\mathbf{X} \mathbf{v})^{T}(\mathbf{X v})$ and so is nonnegative (it can be 0 if $\mathbf{X} \mathbf{v}=0$), while $\mathbf{v}^{T} \mathbf{v}=\|v\|^{2}$ is strictly positive and so (using $\lambda>0$) $-\lambda \mathbf{v}^{T} \mathbf{v}$ is strictly negative and we get a contradiction. So $\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}$ is invertible.

