PSET 10. SOLUTIONS

Problem 1. a) This is identity transformation and so is obviously linear;
b) We have $T(\lambda \cdot \mathbf{v}+\mu \cdot \mathbf{u})=T\left(\left(\lambda \cdot v_{1}+\mu \cdot u_{1}, \lambda \cdot v_{2}+\mu \cdot u_{2}\right)\right)=\left(\lambda \cdot v_{1}+\mu \cdot u_{1}, \lambda \cdot v_{1}+\mu \cdot u_{1}\right)=$ $\lambda \cdot\left(v_{1}, v_{1}\right)+\mu \cdot\left(u_{1}, u_{1}\right)=\lambda \cdot T(\mathbf{v})+\mu \cdot T(\mathbf{u})$, so T is linear;
c) Analogously to b) $T(\lambda \cdot \mathbf{v}+\mu \cdot \mathbf{u})=\lambda \cdot\left(0, v_{1}\right)+\mu \cdot\left(0, u_{1}\right)=\lambda \cdot T(\mathbf{v})+\mu \cdot T(\mathbf{u})$, so T is linear;
d) Is not linear, since $T((0,0))=(0,1)$ is not zero, but $T((0,0))=T(0 \cdot v)$ for any v and if T is linear $T(0 \cdot v)=0 \cdot T(v)=0$ (zero vector), so T is not linear;
e) $T(\lambda \cdot \mathbf{v}+\mu \cdot \mathbf{u})=T\left(\left(\lambda \cdot v_{1}+\mu \cdot u_{1}, \lambda \cdot v_{2}+\mu \cdot u_{2}\right)\right)=\lambda \cdot v_{1}+\mu \cdot u_{1}-\left(\lambda \cdot v_{2}+\mu \cdot u_{2}\right)=\lambda \cdot\left(v_{1}-v_{2}\right)+\mu \cdot\left(u_{1}-u_{2}\right)=$ $\lambda \cdot T(\mathbf{v})+\mu \cdot T(\mathbf{u})$, so T is linear

Problem 2. a) True since $\left(A^{T}\right)^{T}=A$;
b) True, since A^{T} is a 0 matrix if and only if A is (you can also see this by applying ${ }^{T}$ to both sides of the equation $A^{T}=0: A=\left(A^{T}\right)^{T}=0^{T}=0$;
c) True. To find a matrix B, such that $B^{T}=A$ for a given A you can take A^{T}, then $\left(A^{T}\right)^{T}=A$ (and so A is in the range of ${ }^{T}$);
d) Not true. For $A=\left[\begin{array}{cc}0 & 5 \\ -5 & 0\end{array}\right]$ we have $A^{T}=\left[\begin{array}{cc}0 & -5 \\ 5 & 0\end{array}\right]=-\left[\begin{array}{cc}0 & 5 \\ -5 & 0\end{array}\right]=-A$. Even simplier example is given by $A=0$.

Problem 3. We need to find the matrix A such that

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\
\mid & \mid & \mid
\end{array}\right] A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\lambda_{1} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2} & \lambda \mathbf{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]
$$

This matrix is unique (since $V=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ \mid & \mid & \mid\end{array}\right]$ is invertible) and one can easily see that $A=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$ fits.

Problem 4. Let X be the transformation matrix we are looking for. We have the following equation on X:

$$
U X=A V
$$

We also have $A=U \Sigma V^{T}$ (SVD decomposition), putting this into the above equation we get

$$
U X=U \Sigma V^{T} V=U \Sigma \Longleftrightarrow X=\Sigma
$$

So the tranformation matrix for these input and output basises is given by Σ.
Problem 5. In both parts we need to find a matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ such that

$$
\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} \\
\mid & \mid
\end{array}\right] A=\left[\begin{array}{cc}
\mid & \mid \\
T\left(\mathbf{v}_{1}\right) & T\left(\mathbf{v}_{2}\right) \\
\mid & \mid
\end{array}\right]
$$

In other words the coefficients of A are given by the coefficients of $T\left(\mathbf{v}_{1}\right)$ and $T\left(\mathbf{v}_{2}\right)$ in the (unique) expression as a linear combination of the basis vectors $\mathbf{v}_{1}, \mathbf{v}_{2}: T\left(\mathbf{v}_{1}\right)=a_{11} \cdot \mathbf{v}_{1}+a_{21} \cdot \mathbf{v}_{2}$ and $T\left(\mathbf{v}_{2}\right)=a_{12} \cdot \mathbf{v}_{1}+a_{22} \cdot \mathbf{v}_{2}$.
a) We have $T\left(\mathbf{v}_{1}\right)=0=0 \cdot \mathbf{v}_{1}+0 \cdot \mathbf{v}_{2}$ and $T\left(\mathbf{v}_{2}\right)=3 \mathbf{v}_{1}=3 \cdot \mathbf{v}_{1}+0 \cdot \mathbf{v}_{2}$, so $A=\left[\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right]$;
b) From $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}$ and $T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=\mathbf{v}_{1}$ we get $T\left(\mathbf{v}_{2}\right)=T\left(\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)-\mathbf{v}_{1}\right)=T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)-T\left(\mathbf{v}_{1}\right)=$ $\mathbf{v}_{1}-\mathbf{v}_{1}=0$. So $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}=1 \cdot \mathbf{v}_{1}+0 \cdot \mathbf{v}_{2}$ and $T\left(\mathbf{v}_{2}\right)=0=0 \cdot \mathbf{v}_{1}+0 \cdot \mathbf{v}_{2}$, and we get $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

Problem 6. We identify the space of polynomials of degree ≤ 3 with \mathbb{R}^{4} where the polynomial $f(x)=$ $a_{1}+a_{2} \cdot x+a_{3} \cdot x^{2}+a_{4} \cdot x^{3}$ corresponds to a vector $v=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right]$. This way the basis $1, x, x^{2}, x^{3}$ corresponds to the standard basis of \mathbb{R}^{4} and we have $\frac{d}{d x}$ act as

$$
\begin{gathered}
\frac{d}{d x}(1)=0=0 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
\frac{d}{d x}(x)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
\frac{d}{d x}\left(x^{2}\right)=2 \cdot x=0 \cdot 1+2 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
\frac{d}{d x}\left(x^{3}\right)=3 \cdot x^{2}=0 \cdot 1+0 \cdot x+3 \cdot x^{2}+0 \cdot x^{3}
\end{gathered}
$$

So the matrix of the tranformation is given by $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$
Problem 7. Analogously

$$
\begin{gathered}
T(1)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
T(x)=x+1=1 \cdot 1+1 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
T\left(x^{2}\right)=(x+1)^{2}=1 \cdot 1+2 \cdot x+1 \cdot x^{2}+0 \cdot x^{3} \\
T\left(x^{3}\right)=(x+1)^{3}=1 \cdot 1+3 \cdot x+3 \cdot x^{2}+1 \cdot x^{3}
\end{gathered}
$$

So the matrix of the tranformation is given by $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]$
Problem 8. 1. No. $T(c \mathbf{v})=\frac{c \mathbf{v}}{\|c \mathbf{v}\|}=\frac{c}{\|c\|} T(\mathbf{v})$ which is not equal to $c T(\mathbf{v})$ unless $\|c\|=1$.
2. Yes. We have $c \mathbf{v}=\left(c v_{1}, c v_{2}, c v_{3}\right)$, so $T(c \mathbf{v})=c v_{1}+c v_{2}+c v_{3}=c\left(v_{1}+v_{2}+v_{3}\right)=c T(\mathbf{v})$.
3. Yes. We have $c \mathbf{v}=\left(c v_{1}, c v_{2}, c v_{3}\right)$, so $T(c \mathbf{v})=\left(c v_{1}, 2 c v_{2}, 3 c v_{3}=c\left(v_{1}, 2 v_{2}, 3 v_{3}\right)=c T(\mathbf{v})\right.$
4. No. Take $v=(1,0,0)$, then $T(v)=1$, but $T(-v)=0 \neq-1$

