
Application of Whole-Genome Prediction Methods
for Genome-Wide Association Studies: a Bayesian

Approach

R.L. Fernando A. Toosi D.J. Garrick J.C.M. Dekkers

Department of Animal Science
Iowa State University

10th World Congress of Genetics Applied to Livestock
Production



Two Approaches

Bayesian multiple-regression models (BMR)

Single-marker models (SM)
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Compare Approaches

SM BMR
Model Simple Regression Multiple Regression

False Positives (FP) Genomewise Error Rate Proportion of FP
Inference Frequentist Bayesian



Models

Simple Regression
QTL may have low LD with all markers in region
Need to explicitly model population structure

Multiple Regression
Inference based on genomic windows
Markers can capture population structure

Explicit modeling of structure results in lower power

Inference of QTL
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Composite Genomic Window



Controlling False Positives

Genomewise error rate
Control probability of one or more false positives among all
tests
Incurs multiple-test penalty

Proportion of false positives

Control proportion of false positives (PFP)
Related to FDR
No multiple-test penalty (Fernando et al., 2004; Stephens and
Balding, 2009)
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Definition PFP

V number of false positives
R number of positives
PFP = E(V )

E(R)

FDR = E(VR |R > 0)Pr(R > 0)
If PFP is γ in each of n independent experiments, the
proportion of false positives among significant results across all
experiments will converge to γ as n increases.

In general, the above property does not hold for FDR.

PFP is a multiple test extension of the posterior type I error
rate (PER).

If PER is γ for a random test, PFP is also γ for the collection
of tests.
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Definition of PER

In the frequentist approach, inference on H0 is based on the
distribution of some test statistic given H0 is true

posterior type I error rate (PER) is the conditional probability
of H0 being true given that, based on a statistical test, H0 has
been rejected.

PER =
Pr(H0 is rejected,H0 is true)

Pr(H0 is rejected,H0 is true)+Pr(H0 is rejected,H0 is false)

=
α Pr(H0)

α Pr(H0)+(1−β )[1−Pr(H0)]

α is the type I error rate, and (1−β ) is the power of the test
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Definition of PER

In the Bayesian approach, inference on H0 is based on
Pr(H0|y).

Typically, Pr(H0|y) is estimated by counting the number of
MCMC samples where H0 is true.

If H0 is rejected when Pr(H0|y)< γ , PER < γ .

Pr(H0|y) is not a frequentist probability.



Definition of PER

In the Bayesian approach, inference on H0 is based on
Pr(H0|y).

Typically, Pr(H0|y) is estimated by counting the number of
MCMC samples where H0 is true.

If H0 is rejected when Pr(H0|y)< γ , PER < γ .

Pr(H0|y) is not a frequentist probability.



Definition of PER

In the Bayesian approach, inference on H0 is based on
Pr(H0|y).

Typically, Pr(H0|y) is estimated by counting the number of
MCMC samples where H0 is true.

If H0 is rejected when Pr(H0|y)< γ , PER < γ .

Pr(H0|y) is not a frequentist probability.



Definition of PER

In the Bayesian approach, inference on H0 is based on
Pr(H0|y).

Typically, Pr(H0|y) is estimated by counting the number of
MCMC samples where H0 is true.

If H0 is rejected when Pr(H0|y)< γ , PER < γ .

Pr(H0|y) is not a frequentist probability.



Simulation

52k SNP genotypes from 3,570 Angus bulls
100 data sets of size 1000 or 3,570 were randomly sampled
marker effects randomly sampled according to BayesC with
π = 0.995
markers with non-zero effects (QTL) were not included in
marker panel
h2 = 0.9



Results for N=1000



Results for N=3,570



Summary

Genomic window based inference multiple regression models

When PFP is used to manage false positives, no multiple-test
penalty

Bayesian posterior probabilities can be used to control PFP

Pr(H0), and power of test can be treated as unknown
Do not need to know the distribution of test statistic
Simple to determine significance threshold
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