Author: Jaron Ellingson, jaronce@byu.edu
Gram-Schmit Orthogonalization (sometimes refered to as the Gram-Schmidt Process) takes a set of vectors and finds an orthonormal basis which spans that set of vectors. The importance of the Gram-Schmidt Process lies in the fact that sometimes it is convienent to have an orthonormal basis for a set of vectors. Once you have an orthonormal basis, you can find the fourier decomposition, and other series representations such as spherical harmonics and Bessel functions. In addition, this process can be applied to other norm and inner product spaces such as L2, which allows for finding an orthonormal set of functions.
Given a set of of vectors T = {p1,p2,…,pn} we want to find set of vectos T' = {e1,e2,…,en′} with n′≤n so that
span{e1,e2,…,en′}=span{p1,p2,…,pn}and ⟨ei,ej⟩=δi,j
The process will be developed stepwise. The norm ‖⋅‖ is the induced norm.
2. Compute the difference between the projection of p2 onto q1 and p2 by the orthogonality theorem, this is orthogonal to p1: q2=p2−⟨p2,e1⟩e1
These steps are shown in the figure below.
%matplotlib inline
import matplotlib.pyplot as plt
plt.grid(False)
plt.arrow(-1, -1, 2, 1.5, color="Red", head_width=.1, length_includes_head=True)
plt.arrow(-1, -1, 3, 0, color="Red", head_width=.1, length_includes_head=True)
plt.arrow(-1, -1, 2, 0, color="Green", head_width=.1, length_includes_head=True)
plt.arrow(1, -1, 0, 1.5, color="Black", head_width=.1, length_includes_head=True)
plt.arrow(-1, -1, 0.75, 0, color="Blue", head_width=.1, length_includes_head=True)
plt.arrow(-1, -1, 0, 0.75, color="Blue", head_width=.1, length_includes_head=True)
plt.text(-.5, -1.25,"$e_1$", color="Blue",size=14)
plt.text(-1.14, 0,"$e_2$", color="Blue",size=14)
plt.text(1.5, -1.25,"$p_1$", color="Red",size=14)
plt.text(.5, 0.5,"$p_2$", color="Red",size=14)
plt.text(1.1, 0.25,"$q_2$", color="Black",size=14)
#plt.text(1.1, 0.25,"$q_2 = p_2 - proj_{p_1}(p_2)$", color="Black",size=14)
plt.axis((-3, 3, -2, 2))
#plt.axis('off')
(-3, 3, -2, 2)
This is normalized to produce e3
e3=q3‖q3‖plt.grid(False)
plt.arrow(-1, 0, 1.5, 1, color="Red", head_width=.1, length_includes_head=True)
#plt.arrow(-1, -1, 3, 0, color="Red", head_width=.1, length_includes_head=True)
plt.arrow(-1, 0, 1.5, -1, color="Green", head_width=.1, length_includes_head=True)
plt.arrow(0.5, -1, 0, 2, color="Black", head_width=.1, length_includes_head=True)
plt.arrow(-1, 0, 0.75, 0, color="Blue", head_width=.1, length_includes_head=True)
plt.arrow(-1, 0, -0.5, -0.5, color="Blue", head_width=.1, length_includes_head=True)
plt.arrow(-1, 0, 0, 0.75, color="Blue", head_width=.1, length_includes_head=True)
plt.arrow(0.5, -1, 0, 0.75, color="Blue", head_width=.1, length_includes_head=True)
plt.text(-.5, .15,"$e_1$", color="Blue",size=14)
plt.text(-1.14, 1,"$e_2$", color="Blue",size=14)
plt.text(-1.8, -.7,"$e_3$", color="Blue",size=14)
#plt.text(1.5, -1.25,"$p_1$", color="Red",size=14)
plt.text(0, 1.1,"$p_3$", color="Red",size=14)
plt.text(0.6, 0.7,"$q_2$", color="Black",size=14)
#plt.text(1.1, 0.25,"$q_2 = p_2 - proj_{p_1}(p_2)$", color="Black",size=14)
plt.axis((-3, 3, -2, 2))
#plt.axis('off')
(-3, 3, -2, 2)
and normalize
ek=qk‖qk‖import numpy as np
def gram_schmidt(vectors):
basis = []
for v in vectors:
w = v - np.sum( np.dot(v,b)*b for b in basis )
if (w > 1e-10).any():
basis.append(w/np.linalg.norm(w))
return np.array(basis)
test = np.array([[3.0, 1.0], [2.0, 2.0]])
test2 = np.array([[1.0, 1.0, 0.0], [1.0, 3.0, 1.0], [2.0, -1.0, 1.0]])
print(np.array(gram_schmidt(test)))
print(np.array(gram_schmidt(test2)))
[[ 0.9486833 0.31622777] [-0.31622777 0.9486833 ]] [[ 0.70710678 0.70710678 0. ] [-0.57735027 0.57735027 0.57735027] [ 0.40824829 -0.40824829 0.81649658]]
The gram schmidt method can also be used for QR decomposition (A = Q*R). Where Q (Q*transpose(Q) = Idenity) is a unitary matrix and R is an upper triangular matrix.
def gram_schmidt(A,verbose=False):
m = A.shape[0]
n = A.shape[1]
R=np.zeros([m,n])
Q=np.zeros([m,m])
R[0,0]=np.linalg.norm(A[:,0])
if R[0, 0] == 0:
print ("cannot complete Gram_Schimidt decomposition")
else:
Q[:,0]=A[:,0]/R[0,0]
for i in range(1,n):
Q[:,i]=A[:,i]
for j in range(i):
R[j,i]=np.dot(Q[:,j].T,Q[:,i])
Q[:,i]-=R[j,i]*Q[:,j]
R[i,i]=np.linalg.norm(Q[:,i])
if R[i,i]==0:
print("cannot complete Gram_Schimidt decomposition")
else:
Q[:, i] = Q[:, i] / R[i, i]
return Q,R
A = np.random.randint(0,10000,(4,4))
print("A = ", A)
Q, R = gram_schmidt(A)
print ("Q * R = ", np.dot(Q, R))
print("Q = ", Q)
print("R = ", R)
print("Q * Tranpose(Q) = ", np.dot(Q, np.transpose(Q)))
A = [[7452 1050 8608 1157] [3652 3175 1384 6425] [8434 204 7797 3573] [7642 7533 566 9293]] Q * R = [[7452. 1050. 8608. 1157.] [3652. 3175. 1384. 6425.] [8434. 204. 7797. 3573.] [7642. 7533. 566. 9293.]] Q = [[ 0.52905388 -0.31446399 0.74287648 -0.26334183] [ 0.25927332 0.28476492 0.25073724 0.88815377] [ 0.59877085 -0.51828775 -0.58984596 0.15790194] [ 0.54254291 0.74256256 -0.19325401 -0.34190778]] R = [[14085.52192856 5587.82432055 9888.62569001 9459.20589068] [ 0. 6061.93445714 -5933.59056943 6514.57147057] [ 0. 0. 2033.29041635 -1432.93427866] [ 0. 0. 0. 2788.53614384]] Q * Tranpose(Q) = [[ 1.00000000e+00 3.60822483e-16 1.17961196e-16 -1.52655666e-16] [ 3.60822483e-16 1.00000000e+00 4.44089210e-16 -2.77555756e-16] [ 1.17961196e-16 4.44089210e-16 1.00000000e+00 -2.01227923e-16] [-1.52655666e-16 -2.77555756e-16 -2.01227923e-16 1.00000000e+00]]
This example gives the Chebyshev polynomials as a function of cos. These polynomials are simular to the Legendre polynomials but start with the set of functions: {cos(x),cos(2x),...cos(nx)}. The Gram-Schmidt Orthonormalization will find the orthonormal functions which span this set.
def norm(vector,t):
return np.sqrt(np.trapz(vector*vector,t))
def inner(vector1,vector2,t):
return np.trapz(vector1*vector2,t)
N = 100000
t = np.linspace(-1,1,N)
p = np.zeros((N,5))
for kk in range(5):
p[:,kk] = np.cos(t*kk)
e1 = p[:,0]/norm(p[:,0],t)
q2 = p[:,1]-inner(p[:,1],e1,t)*e1
e2 = q2/norm(q2,t)
q3 = p[:,2]-inner(p[:,2],e2,t)*e2-inner(p[:,2],e1,t)*e1
e3 = q3/norm(q3,t)
q4 = p[:,3]-inner(p[:,3],e3,t)*e3-inner(p[:,3],e2,t)*e2-inner(p[:,3],e1,t)*e1
e4 = q4/norm(q4,t)
q5 = p[:,4]-inner(p[:,4],e4,t)*e4-inner(p[:,4],e3,t)*e3-inner(p[:,4],e2,t)*e2-inner(p[:,4],e1,t)*e1
e5 = q5/norm(q5,t)
plt.plot(t,e1,label='e_1')
plt.plot(t,e2,label='e_2')
plt.plot(t,e3,label='e_3')
plt.plot(t,e4,label='e_4')
plt.plot(t,e5,label='e_5')
plt.grid()
plt.legend()
<matplotlib.legend.Legend at 0x7f34d7526ac8>
The Chebyshev and Legendre polynomials are important in many physics applications. One major example is shown in quantum phyisics where these polynomials appear as solutions to the Schrodinger equation. These polynomials allow for calculations of the wavefunctions for the hydrogen atom and for determining electrical potential in spherical coordinates.