from __future__ import division
import numpy as np
import math
import pandas as pd
print np.__version__
print pd.__version__
1.14.2 0.20.3
def mean(x):
return sum(x) / len(x)
def variance(x):
return (standard_deviation(x))**2
def standard_deviation(lst):
m = mean(lst)
return math.sqrt(float(reduce(lambda x, y: x + y, map(lambda x: (x - m) ** 2, lst))) / len(lst))
X = [1, 2, 3, 4, 5]
print 'Mean: {}'.format(mean(X))
print 'Variance: {}'.format(variance(X))
print 'Standard Deviation: {}'.format(standard_deviation(X))
Mean: 3.0 Variance: 2.0 Standard Deviation: 1.41421356237
def mean(x):
return np.mean(x)
def variance(x):
return np.var(x)
def standard_deviation(x):
return np.std(x)
X = [1, 2, 3, 4, 5]
print 'Mean: {}'.format(mean(X))
print 'Variance: {}'.format(variance(X))
print 'Standard Deviation: {}'.format(standard_deviation(X))
Mean: 3.0 Variance: 2.0 Standard Deviation: 1.41421356237