NYPD Collision Data Analysis

FINISHED

Data for this project is taken from NYC Open Data, https://data.cityofnewyork.us/public-safety/NYPD-Motor-Vehicle-Collisions website where data is provided by Police Department(NYPD).This project i decided to work with Spark. Visualization of the data is done with Zeppelin inbuilt features.

Data Loading

```
%pyspark FINISHED
#Initialize SparkSession and SparkContext
from pyspark.sql import SparkSession
from pyspark import SparkConf
from pyspark import SparkContext
#Create a Spark Session
SpSession = SparkSession \
    .builder \
    .master("local[2]") \
    .config("spark.executor.memory", "1g") \
    .config("spark.executor.memory", "1g") \
    .config("spark.executor.memory", "file:///tmp/spark-warehouse")\
    .config("spark.cores.max", "2") \
    .getOrCreate()
```

read the nypd collision data which is a csv file into the datafarame
collisionDataDF = SpSession.read.csv("/Users/girishdurgaiah/spark/NYPDCollisionData.csv",h

%pyspark

FINISHED

after the data is read into the dataframe make sure the data exists in dataframe
show () will show top 20 rows but we can specify the number of rows we want to see

```
collisionDataDF.show(3)
```

_____ --+----+ DATE | TIME | BOROUGH | ZIP CODE | LATITUDE | LONGITUDE | LOCATION ON STREET CROSS STREET NAME/OFF STREET NAME/NUMBER OF PERSONS INJURED/NUMBER OF PERSONS KILLED NAME INUMBER OF PEDESTRIANS INJUREDINUMBER OF PEDESTRIANS KILLEDINUMBER OF CYCLIST INJUREDINUMBE R OF CYCLIST KILLED NUMBER OF MOTORIST INJURED NUMBER OF MOTORIST KILLED CONTRIBUTING FACTO R VEHICLE 1 CONTRIBUTING FACTOR VEHICLE 2 CONTRIBUTING FACTOR VEHICLE 3 CONTRIBUTING FACTOR VEHICLE 4 CONTRIBUTING FACTOR VEHICLE 5 UNIQUE KEY VEHICLE TYPE CODE 1 VEHICLE TYPE CODE 2 VEHICLE TYPE CODE 3 VEHICLE TYPE CODE 4 VEHICLE TYPE CODE 5

FINISHED

%pyspark

count the number of rows in he dataframe
there are 1052351 rows in the dataframe
collisionDataDF.count()

1052351

%pyspark **FINISHED** #lets see the columns and their schema of the dataframe # By printing schema we can see the column names and their type collisionDataDF.printSchema() root I-- DATE: string (nullable = true) I-- TIME: string (nullable = true) I-- BOROUGH: string (nullable = true) I-- ZIP CODE: string (nullable = true) I-- LATITUDE: string (nullable = true) I-- LONGITUDE: string (nullable = true) I-- LOCATION: string (nullable = true) I-- ON STREET NAME: string (nullable = true) I-- CROSS STREET NAME: string (nullable = true) I-- OFF STREET NAME: string (nullable = true) I-- NUMBER OF PERSONS INJURED: string (nullable = true) I-- NUMBER OF PERSONS KILLED: string (nullable = true) I-- NUMBER OF PEDESTRIANS INJURED: string (nullable = true) I-- NUMBER OF PEDESTRIANS KILLED: string (nullable = true) I-- NUMBER OF CYCLIST INJURED: string (nullable = true) I-- NUMBER OF CYCLIST KILLED: string (nullable = true) 1__ NUMBED OF MOTORTET TNILLED. string (nullahla - true)

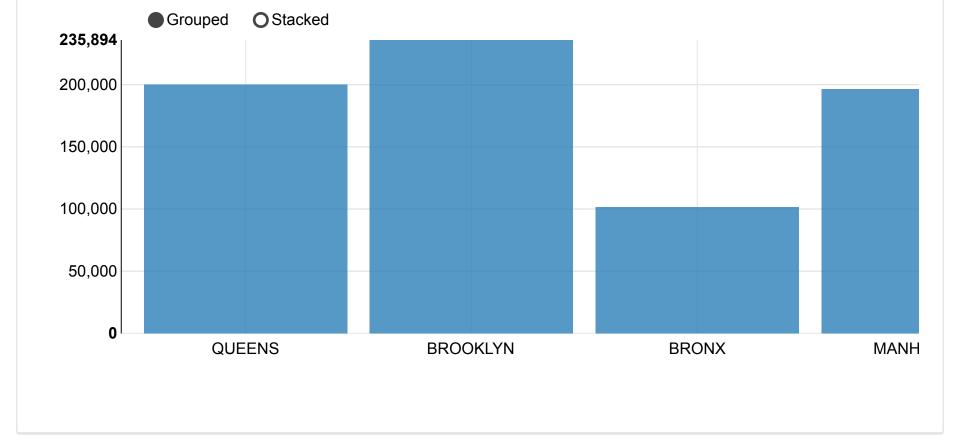
%pyspark # rename the column names of dataframe
<pre># rename the column names of dataframe collisionDataDF = collisionDataDF.withColumnRenamed("NUMBER OF PERSONS KILLED", "personsKi withColumnRenamed("NUMBER OF PERSONS INJURED", "personsInjured"). \ withColumnRenamed("NUMBER OF PEDESTRIANS INJURED", "pedestriansInjured" withColumnRenamed("NUMBER OF PEDESTRIANS KILLED", "pedestriansKilled") withColumnRenamed("NUMBER OF CYCLIST INJURED", "cyclistInjured"). \ withColumnRenamed("NUMBER OF CYCLIST KILLED", "cyclistKilled"). \ withColumnRenamed("NUMBER OF MOTORIST INJURED", "cyclistKilled"). \ withColumnRenamed("NUMBER OF MOTORIST INJURED", "motoristInjured"). \ withColumnRenamed("NUMBER OF MOTORIST KILLED", "motoristKilled"). \ withColumnRenamed("NUMBER OF MOTORIST KILLED", "motoristKilled"). \ withColumnRenamed("CONTRIBUTING FACTOR VEHICLE 1", "factorVehicle1"). \ withColumnRenamed("CONTRIBUTING FACTOR VEHICLE 2", "factorVehicle2"). \ withColumnRenamed("VEHICLE TYPE CODE 1", "vehicle1"). \ withColumnRenamed("VEHICLE TYPE CODE 2", "vehicle2"). \ withColumnRenamed("VEHICLE TYPE CODE 2", "vehicle2"). \ withColumnRenamed("UEHICLE TYPE CODE 2", "vehicle2"). \</pre>
withColumnRenamed("UNIQUE KEY", "key")

DATA ANALYSIS

%pyspark

#Register a temp table called "collision" using collisionDataDF. collisionDataDF.createOrReplaceTempView("collision")

NUMBER OF COLLISIONS IN EACH BOROUGH


Ħ	<u> 11 </u>	¢	~	.×		Ł	-	settings
				••	ļ			Settings

FINISHED

FINISHED

FINISHED

FINISHED

Above table shows the total number of collisions for all 5 Boroughs.BROOKLYN tops the list WM&HED 235,894 collisions and STATEN ISLAND is the least with 35562 collisions.The reason may be the population. Staten Island is the least populated borough.

PEOPLE INJURED DURING COLLISION

FINISHED

%sql select sum(CAST(personsInjured AS INT)), sum(CAST(pedestriansInjured AS INT)), sum(CAST(cy (motoristInjured AS INT)) from collision

▼

⊞	<u> .111</u>	¢		~	<u></u>		Ł
---	--------------	---	--	---	---------	--	---

	S INT)) sum(CAST(pedestrian	sInjured AS INT)) sum(CAST(cyclis
268335	55889	3312502
PEOPLE KILLED DURING COL	LISION	FINISHED
%sql		
-		FINISHED
select sum(CASI(personsKil (motoristKilled AS INT		riansKilled AS INT)), sum(CAST(cycl
)) from collision	riansKilled AS INT)), sum(CAST(cycl
(motoristKilled AS INT)) from collision	
(motoristKilled AS INT ■)) from collision	
(motoristKilled AS INT)) from collision INT)) sum(CAST(pedestrians))	Killed AS INT)) sum(CAST(cyclistKi
(motoristKilled AS INT)) from collision INT)) sum(CAST(pedestrians))	Killed AS INT)) sum(CAST(cyclistK
(motoristKilled AS INT)) from collision INT)) sum(CAST(pedestrians))	Killed AS INT)) sum(CAST(cyclistK
(motoristKilled AS INT)) from collision INT)) sum(CAST(pedestrians))	Killed AS INT)) sum(CAST(cyclistK
(motoristKilled AS INT)) from collision INT)) sum(CAST(pedestrians))	Killed AS INT)) sum(CAST(cyclistK
(motoristKilled AS INT)) from collision INT)) sum(CAST(pedestrians))	Killed AS INT)) sum(CAST(cyclistK
(motoristKilled AS INT)) from collision INT)) sum(CAST(pedestrians))	Killed AS INT)) sum(CAST(cyclistK

From the above queries we see cyclist are most injured and least killed.where as pedestrians and the set of th

%md TYPE OF VEHICLE INVOLVING IN COLLISION

TYPE OF VEHICLE INVOLVING IN COLLISION

FINISHED select vehicle1, count(vehicle1) as count from collision where vehicle1 != 'null' group b <u>y</u>							
vehicle1							
PASSENGER VEHICLE							
SPORT UTILITY / STATION WAGON							
TAXI							
VAN							
OTHER							
UNKNOWN							
PICK-UP TRUCK							
SMALL COM VEH(4 TIRES)							
LARGE COM VEH(6 OR MORE TIRES)							

Passenger vehicle and Sport utility tops the list with most numbers where as scooter and petites the least.

If the collision is between two vehicles vehicle type of second vehicle is also collected and shown in the table

%sql select	vehicle2,	count(vehicle2)	as count	from collision	where vehicle2	FINISHED != 'null' group b <u>'</u>
			-			

FINISHED

PASSENGER VEHICLE

SPORT UTILITY / STATION WAGON

UNKNOWN

TAXI

OTHER

VAN

BICYCLE

PICK-UP TRUCK

SMALL COM VEH(4 TIRES)

FACTORS CONTRIBUTED IN COLLISION

FINISHED

Now will see what are the main factors contributed for collision. First will see factors contributed by first vehicle then factors contributed by second vehicle if the collision is between two vehicles. Actual data shows factors for third and fourth vehicle also but here we are analyzing only two vehicles.

%sql

FINISHED select factorVehicle1, count(factorVehicle1) as count from collision where factorVehicle1 ORDER BY count DESC

factorVehicle1

Unspecified

Driver Inattention/Distraction

Fatigued/Drowsy

Failure to Yield Right-of-Way

Other Vehicular

Backing Unsafely

Turning Improperly

Lost Consciousness

Following Too Closely

sql							
elect factorVehicle2, count(factorVehicle2) as count from collision where factorVehicle ORDER BY count DESC							
actorVehicle2							
nspecified							
river Inattention/Distraction							
ther Vehicular							
atigued/Drowsy							
ailure to Yield Right-of-Way							
Lost Consciousness							
Turning Improperly							
Backing Unsafely							
river Inexperience							

Factors contributing to most of the collisions are Unspecified.Next factor contributing to mostNISHED collision is Driver inattention. Some of the other top contributing factors are fatigue, failure to yield and improper turning.

%md

TOTAL NUMBER OF COLLISIONS BY YEAR

FINISHED

We have the data from year 2012 to 2017. We will see how the number of collisions and the

TOTAL NUMBER OF COLLISIONS BY YEAR

We have the data from year 2012 to 2017. We will see how the number of collisions and the year are related.

%sql Select YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS year, count(YEAR(CAST TIMESTAMP))) as count from collision GROUP BY (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/y

	⊞	<u>.111</u>	¢		~	<u></u>		Ł
--	---	-------------	---	--	---	---------	--	---

year	▼ count
null	0
2012	100527
2013	203716
2014	205978
2015	217640
2016	227736
2017	96753

T

TOTAL NUMBER OF COLLISIONS BY MONTH

FINISHED

%sql

FINISHED Select MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS month, count(MONTH(AS TIMESTAMP))) as count from collision where (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/y (MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP))) ORDER BY month ASC

month	▼ count
1	15643
2	14396
3	16507
4	16438
5	18485
6	18204
7	17575
8	16754
9	16955

%sql
Select MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS month, count(MONTH(
AS TIMESTAMP))) as count from collision where (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/y')
(MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP))) ORDER BY month ASC

%sql

FINISHED

Select MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS month, count(MONTH(AS TIMESTAMP))) as count from collision where (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/y (MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy')) AS TIMESTAMP))) ORDER BY month ASC

month	▼ count
1	16122
2	15712
3	17948
4	16789
5	19272
6	18818
7	18764
8	18973
9	18510
%sql	READY