
NYPDCollisions

NYPD Collision Data Analysis

Data for this project is taken from NYC Open Data, https://data.cityofnewyork.us/public-safety/NYPD-
Motor-Vehicle-Collisions website where data is provided by Police Department(NYPD).This project i
decided to work with Spark. Visualization of the data is done with Zeppelin inbuilt features.

Data Loading

FINISHED

%pyspark

#Initialize SparkSession and SparkContext
from pyspark.sql import SparkSession
from pyspark import SparkConf
from pyspark import SparkContext

#Create a Spark Session
SpSession = SparkSession \
 .builder \
 .master("local[2]") \
 .appName("PG Spark App") \
 .config("spark.executor.memory", "1g") \
 .config("spark.sql.warehouse.dir", "file:///tmp/spark-warehouse")\
 .config("spark.cores.max","2") \
 .getOrCreate()

read the nypd collision data which is a csv file into the datafarame
collisionDataDF = SpSession.read.csv("/Users/girishdurgaiah/spark/NYPDCollisionData.csv",header

FINISHED

%pyspark
after the data is read into the dataframe make sure the data exists in dataframe
show () will show top 20 rows but we can specify the number of rows we want to see

collisionDataDF.show(3)

FINISHED

+----------+----+--------+--------+---------+---------+--------------------+---------------
-----+-------------------+---------------+-------------------------+-----------------------
-+-----------------------------+----------------------------+-------------------------+----
--------------------+--------------------------+-------------------------+-----------------
------------+-----------------------------+-----------------------------+------------------
-----------+-----------------------------+----------+-------------------+------------------
--+-------------------+-------------------+-------------------+
| DATE|TIME| BOROUGH|ZIP CODE| LATITUDE|LONGITUDE| LOCATION| ON STREET
NAME| CROSS STREET NAME|OFF STREET NAME|NUMBER OF PERSONS INJURED|NUMBER OF PERSONS KILLED
|NUMBER OF PEDESTRIANS INJURED|NUMBER OF PEDESTRIANS KILLED|NUMBER OF CYCLIST INJURED|NUMBE
R OF CYCLIST KILLED|NUMBER OF MOTORIST INJURED|NUMBER OF MOTORIST KILLED|CONTRIBUTING FACTO
R VEHICLE 1|CONTRIBUTING FACTOR VEHICLE 2|CONTRIBUTING FACTOR VEHICLE 3|CONTRIBUTING FACTOR
VEHICLE 4|CONTRIBUTING FACTOR VEHICLE 5|UNIQUE KEY|VEHICLE TYPE CODE 1| VEHICLE TYPE CODE 2
|VEHICLE TYPE CODE 3|VEHICLE TYPE CODE 4|VEHICLE TYPE CODE 5|
+----------+----+--------+--------+---------+---------+--------------------+---------------
-----+-------------------+---------------+-------------------------+-----------------------
-+-----------------------------+----------------------------+-------------------------+----
--------------------+--------------------------+-------------------------+-----------------

%pyspark
count the number of rows in he dataframe
there are 1052351 rows in the dataframe
collisionDataDF.count()

1052351

FINISHED

%pyspark
#lets see the columns and their schema of the dataframe
By printing schema we can see the column names and their type
collisionDataDF.printSchema()

root
 |-- DATE: string (nullable = true)
 |-- TIME: string (nullable = true)
 |-- BOROUGH: string (nullable = true)
 |-- ZIP CODE: string (nullable = true)
 |-- LATITUDE: string (nullable = true)
 |-- LONGITUDE: string (nullable = true)
 |-- LOCATION: string (nullable = true)
 |-- ON STREET NAME: string (nullable = true)
 |-- CROSS STREET NAME: string (nullable = true)
 |-- OFF STREET NAME: string (nullable = true)
 |-- NUMBER OF PERSONS INJURED: string (nullable = true)
 |-- NUMBER OF PERSONS KILLED: string (nullable = true)
 |-- NUMBER OF PEDESTRIANS INJURED: string (nullable = true)
 |-- NUMBER OF PEDESTRIANS KILLED: string (nullable = true)
 |-- NUMBER OF CYCLIST INJURED: string (nullable = true)
 |-- NUMBER OF CYCLIST KILLED: string (nullable = true)
 |-- NUMBER OF MOTORIST INJURED: string (nullable = true)

FINISHED

%pyspark
rename the column names of dataframe
collisionDataDF = collisionDataDF.withColumnRenamed("NUMBER OF PERSONS KILLED", "personsKilled"
 withColumnRenamed("NUMBER OF PERSONS INJURED", "personsInjured"). \
 withColumnRenamed("NUMBER OF PEDESTRIANS INJURED", "pedestriansInjured"
 withColumnRenamed("NUMBER OF PEDESTRIANS KILLED", "pedestriansKilled"). \
 withColumnRenamed("NUMBER OF CYCLIST INJURED", "cyclistInjured"). \
 withColumnRenamed("NUMBER OF CYCLIST KILLED", "cyclistKilled"). \
 withColumnRenamed("NUMBER OF MOTORIST INJURED", "motoristInjured"). \
 withColumnRenamed("NUMBER OF MOTORIST KILLED", "motoristKilled"). \
 withColumnRenamed("CONTRIBUTING FACTOR VEHICLE 1", "factorVehicle1"). \
 withColumnRenamed("CONTRIBUTING FACTOR VEHICLE 2", "factorVehicle2"). \
 withColumnRenamed("VEHICLE TYPE CODE 1", "vehicle1"). \
 withColumnRenamed("VEHICLE TYPE CODE 2", "vehicle2"). \
 withColumnRenamed("UNIQUE KEY", "key")

FINISHED

DATA ANALYSIS FINISHED

%pyspark

#Register a temp table called "collision" using collisionDataDF.
collisionDataDF.createOrReplaceTempView("collision")

FINISHED

NUMBER OF COLLISIONS IN EACH BOROUGH FINISHED

 ! " # $! % settings & FINISHED |

QUEENS BROOKLYN BRONX MANHATTAN
0

50,000

100,000

150,000

200,000

0

235,894
Grouped Stacked

Above table shows the total number of collisions for all 5 Boroughs.BROOKLYN tops the list with
235,894 collisions and STATEN ISLAND is the least with 35562 collisions.The reason may be the
population. Staten Island is the least populated borough.

FINISHED

PEOPLE INJURED DURING COLLISION FINISHED

%sql
select sum(CAST(personsInjured AS INT)), sum(CAST(pedestriansInjured AS INT)), sum(CAST(cyclistInjured
 (motoristInjured AS INT)) from collision

 | " # $! %

FINISHED

!

268335 55889 3312502
▼

sum(CAST(personsInjured AS INT))
▼

sum(CAST(pedestriansInjured AS INT)) sum(CAST(cyclistInjured AS INT))

PEOPLE KILLED DURING COLLISION FINISHED

%sql

select sum(CAST(personsKilled AS INT)), sum(CAST(pedestriansKilled AS INT)), sum(CAST(cyclistKilled
 (motoristKilled AS INT)) from collision

 | " # $! %

1259 706 79

▼sum(CAST(personsKilled AS INT))
▼

sum(CAST(pedestriansKilled AS INT)) sum(CAST(cyclistKilled AS INT))

FINISHED

From the above queries we see cyclist are most injured and least killed.where as pedestrians are leastFINISHED

!

▼

sum(CAST(personsInjured AS INT))
▼

sum(CAST(pedestriansInjured AS INT)) sum(CAST(cyclistInjured AS INT))

▼sum(CAST(personsKilled AS INT))
▼

sum(CAST(pedestriansKilled AS INT)) sum(CAST(cyclistKilled AS INT))

injured and most killed.

%md
TYPE OF VEHICLE INVOLVING IN COLLISION

TYPE OF VEHICLE INVOLVING IN COLLISION

FINISHED

%sql
select vehicle1, count(vehicle1) as count from collision where vehicle1 != 'null' group by

 | " # $! %

PASSENGER VEHICLE

SPORT UTILITY / STATION WAGON

TAXI

VAN

OTHER

UNKNOWN

PICK-UP TRUCK

SMALL COM VEH(4 TIRES)

LARGE COM VEH(6 OR MORE TIRES)

vehicle1

FINISHED

Passenger vehicle and Sport utility tops the list with most numbers where as scooter and pedicab are
the least.

If the collision is between two vehicles vehicle type of second vehicle is also collected and shown in
the table

FINISHED

%sql
select vehicle2, count(vehicle2) as count from collision where vehicle2 != 'null' group by

 | " # $! %

FINISHED

!

!

vehicle1

PASSENGER VEHICLE

SPORT UTILITY / STATION WAGON

UNKNOWN

TAXI

OTHER

VAN

BICYCLE

PICK-UP TRUCK

SMALL COM VEH(4 TIRES)

vehicle2

FACTORS CONTRIBUTED IN COLLISION
Now will see what are the main factors contributed for collision. First will see factors contributed by
first vehicle then factors contributed by second vehicle if the collision is between two vehicles. Actual
data shows factors for third and fourth vehicle also but here we are analyzing only two vehicles.

FINISHED

%sql
select factorVehicle1, count(factorVehicle1) as count from collision where factorVehicle1
 ORDER BY count DESC

 | " # $! %

Unspecified

Driver Inattention/Distraction

Fatigued/Drowsy

Failure to Yield Right-of-Way

Other Vehicular

Backing Unsafely

Turning Improperly

Lost Consciousness

Following Too Closely

factorVehicle1

FINISHED

!

vehicle2

factorVehicle1

%sql

select factorVehicle2, count(factorVehicle2) as count from collision where factorVehicle2
 ORDER BY count DESC

 | " # $! %

Unspecified

Driver Inattention/Distraction

Other Vehicular

Fatigued/Drowsy

Failure to Yield Right-of-Way

Lost Consciousness

Turning Improperly

Backing Unsafely

Driver Inexperience

factorVehicle2

FINISHED

Factors contributing to most of the collisions are Unspecified.Next factor contributing to most
collision is Driver inattention. Some of the other top contributing factors are fatigue, failure to yield
and improper turning.

FINISHED

%md
TOTAL NUMBER OF COLLISIONS BY YEAR

We have the data from year 2012 to 2017. We will see how the number of collisions and the year are related.

TOTAL NUMBER OF COLLISIONS BY YEAR
We have the data from year 2012 to 2017. We will see how the number of collisions and the year are
related.

FINISHED

%sql
Select YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS year, count(YEAR(CAST
 TIMESTAMP))) as count from collision GROUP BY (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy'

FINISHED

!

factorVehicle2

 | " # $! %

null 0

2012 100527

2013 203716

2014 205978

2015 217640

2016 227736

2017 96753

▼year count

TOTAL NUMBER OF COLLISIONS BY MONTH FINISHED

%sql
Select MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS month, count(MONTH(CAST
 AS TIMESTAMP))) as count from collision where (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy'
 (MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP))) ORDER BY month ASC

 | " # $! %

1 15643

2 14396

3 16507

4 16438

5 18485

6 18204

7 17575

8 16754

9 16955

▼month count

FINISHED

!

!

▼year count

▼month count

%sql
Select MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS month, count(MONTH(CAST
 AS TIMESTAMP))) as count from collision where (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy'
 (MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP))) ORDER BY month ASC

 ! " # $! % settings &

1 2 3 4 5 6 7 8
0

5,000

10,000

15,000

0

18,401
Grouped Stacked

FINISHED

%sql
Select MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP)) AS month, count(MONTH(CAST
 AS TIMESTAMP))) as count from collision where (YEAR(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy'
 (MONTH(CAST(UNIX_TIMESTAMP(Date, 'MM/dd/yyyy') AS TIMESTAMP))) ORDER BY month ASC

 | " # $! %

FINISHED

|

!

1 16122

2 15712

3 17948

4 16789

5 19272

6 18818

7 18764

8 18973

9 18510

▼month count

%sql READY

▼month count

