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Chapter 1

Testing hypotheses about a mean

1.1 Discrete Distribution

Example 1: Flip a Coin

Suppose we flip a fair coin, 6 times. We already have seen, flipping a coin once is a Bernoulli
trial, and a number of times (including once also), gives us a binomial distribution for frequency
and probability of no of heads (or tails depending on our interest) in the final combination.

Above distributions are the theoretical frequency and probability distribution of all outcomes
possible for number of flips 6.

� From the distributions, you are already clear, if you conduct the experiment once (flipping 6
times), getting 3 heads in final outcome has the highest probability P (X = 3) = 0.3125.

� However, if you get 4 heads in final combination X = 4, that has about 23% probability, it is
not bad, its just next to mean. So you still have ground to believe the mean was still X = 3.

� And, if you get 6 heads, then it is a rare case, that is, P (X = 6) = 0.015625 or 1.5625% only.
We have reason to believe that, there is something else at play. Perhaps, coin was loaded
(distribution skewed to right), that getting X = 6 was not a rarity at all.
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This is kind of basis for hypothesis testing. We could define an uneventful hypothesis and then
depending on probability of outcome we had from our experiment,we either believe that Hypothesis
or reject it. If you had gotten X = 3, that has maximum probability of 31.25% of all outcomes, so
we could very well accept our hypothesis that, indeed the mean is X = 3.

Alternate hypothesis: Mean has increased

Suppose we get X = 4:

1. We would first define a null hypothesis H0 : µ = 3 and alternate hypothesis Ha : µ > 3
2. We would look at our experiment. Our outcome was X = 4. This has only 23% chance out

of all possibilities if null hypothesis was true.
3. So we cannot reject null hypothesis that H0 : µ = 3. There is lesser evidence that the

mean has increased, suggesting there is not enough data to believe alternate hypothesis
Ha : µ > 3

Suppose we get X = 6:

1. We would first define a null hypothesis H0 : µ = 3 and alternate hypothesis Ha : µ > 3
2. We would look at our experiment. Our outcome was X = 6. This has only 1.5% chance out

of all possibilities if null hypothesis was true.
3. So we reject null hypothesis that H0 : µ = 3 and say, there is stronger evidence that

the mean has increased, suggesting alternate hypothesis Ha : µ > 3

Alternate hypothesis: Mean has decreased

Suppose we get X = 2

1. We would first define a null hypothesis H0 : µ = 3 and alternate hypothesis Ha : µ < 3
2. We would look at our experiment. Our outcome was X = 2. This has only 23% chance out

of all possibilities if null hypothesis was true.
3. So we cannot reject null hypothesis that H0 : µ = 3. There is lesser evidence that the

mean has decreased, suggesting there is not enough data to believe alternate hypothesis
Ha : µ < 3

Suppose we get X = 0

1. We would first define a null hypothesis H0 : µ = 3 and alternate hypothesis Ha : µ < 3
2. We would look at our experiment. Our outcome was X = 0. This has again only 1.5% chance

out of all possibilities if null hypothesis was true.
3. So we reject null hypothesis that H0 : µ = 3 and say, there is stronger evidence that the

mean has decreased, suggesting alternate hypothesis Ha : µ < 3

Significance level α

Who decides 1.5% was low enough to reject null hypothesis or 23% was high enough to avoid
rejecting null hypothesis? Well, that is a standard taken by statisticians called significance level
α. Suppose we take our α = 0.05 or 5%, then we would say, if the probability of the outcome was
below α, we reject the null hypothesis else we we will not.

For eg, in above cases,
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� For X = 4, P (X = 4) = 0.234 then, P (X = k) > α, so cannot reject null hypothesis
H0 : µ = 3

� For X = 6, P (X = 6) = 0.015 then, P (X = k) < α, so reject null hypothesis H0 : µ = 3
� For X = 2, P (X = 2) = 0.234 then, P (X = k) > α, so cannot reject null hypothesis
H0 : µ = 3

� For X = 0, P (X = 0) = 0.015 then, P (X = k) < α, so reject null hypothesis H0 : µ = 3

Typically, α values are 0.05 (5%), 0.01 (1%), etc. and specified in the question. We had used
α earlier in confidence intervals, for confidence level 1− α. Also note it is better to say, we cannot
reject null hypothesis than accepting it.

A basic hypothesis test

� If P (X = k) < α, we will reject null hypothesis H0

� If P (X = k) > α, we will not reject null hypothesis H0

But why did we reject or accept the hypothesis about the mean, when it was clearly µ = 3?
The µ was the population mean and most often in reality we would not know it. The binomial
distribution shown above, was a theoretical distribution for equal probability of heads and tails. In
reality, it may be the case that the coin was loaded (unequal probabilities) or population distribution
was skewed. And we may not take enough trials to form a normal sampling distribution which

then would give us hint about population mean due to CLT. Recall,
(
X → µ, S → σ/

√
n
)

. We

would have one sample set output, and have to take best decision out of that. This is why we
assumed null hypothesis, even though our theoretical mean was obvious. We will assume that
above binomial distribution is indeed the case, and observe probability of our outcome, given that
was case. Let us consider another example, this time continous.

1.2 Continuous Distribution

Let X be the breaking strength of a steel bar. If the bar is manufactured by process I, X has
population distribution is N(50, 36) and if process II, has population distribution N(55, 36), a 5
units improvement. If hypothetically, we take extensive sample sets of size n and plot the means,
we get another set of normal sampling distributions as below, with process I having sampling
distribution N(50, 36/

√
n), and process II having sampling distribution N(55, 36/

√
n)

The tikzmagic extension is already loaded. To reload it, use:

%reload ext tikzmagic

Let us assume null hypothesis as H0 : X = 50 and alternate hypothesis as Ha : X = 55. If now
we take a sample set, x = x1, x2, x3..xn, and calculate x.
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� If x < 50 we clearly cannot reject null hypothesis obviously H0 : X = 50, because the
probability for mean of sampling distribution to be 55 is almost 0.

� If x > 55, we clearly reject null hypothesis, as probability for mean of sampling distribution
to be 50 is almost 0.

Of course, if x nears 45 or 60, we have similar hypothesis story waiting(?!). The interesting
part is to wonder, what if 50 < x < 55. Note that, for x ≥ 53, the probability for N(55, 36) is
higher than that for N(50, 36). Similarly, for x < 53, the probability for N(50, 36) is higher. This
is highlighted with respective probability area below.

The rejection range for null hypothesis, which is x ≥ 53 is called the critical region C shown in
red line above. Assuming null hypothesis is true, the probability for sampling set falling in critical
region is called, again the significance level α. This is highlighted in green in above diagram.

Type I error:

Think about it. We decided if x ≥ 53, we would reject null hypothesis H0 : X = 50. However,
there is still this slight probability α, that it could still be that the H0 is true. Thus, due to our
decision that we reject H0 when x ≥ 53, we have α chance that, the reality is still H0, and thus
we would be committing an error. Rejecting null hypothesis H0, when in reality, its true, is called
Type I error. As I said, we have α chance for that, thus the probability of Type I error is α

Type II error:

It could happen the other way also as noted in yellow shade above. We decided if x < 53 we
would reject the alternate hypothesis Ha : X = 55. But though less, there is still a probability
shown in yellow color above, that Ha could be true, and we still choose to reject it. Rejecting
the alternate hypothesis Ha, when in reality, it is true, is called Type II error. The associated
probability of doing that error, as shown in yellow, is denoted by β

Critical region, Type I and II errors

� The values on x axis, where H0 is rejected is called Critical region C.

� Rejecting null hypothesis H0 when in reality it is true is Type I error. Its probability
is called significance level of the test α

� Rejecting alternate hypothesis Ha when in reality it is true is Type II error. Its
probability is β
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Calculating α and β for given n

This is when we get in to problem of calculating the associated probabilities. Let sample set
size n = 16.

Note, α is given H0 is true, the probability of sample mean falling in critical region, shortly
noted as P (X > 53;H0)

By transforming the sampling distribution of process I to Z, we could calculate the probability
α. In other words, by calculating the Z score for x = 53, we could calculate the probability
P (X > 53;H0). Note σ2 = 36→ σ = 6

Z =
X − µ
σ/
√
n

=
53− 50

6/
√

16

In[6]: def get_zscore(x, mu, sigma, n):

num = x - mu

from math import sqrt

den = sigma/sqrt(n)

return round(num/den, 3)

z = get_zscore(53, 50, 6, 16)

print(z)

2.0

The Z score is 2. Now its easier to calculate the probability area.
P (X > 53;H0) = P (Z > 2;H0)

In[7]: def get_zarea(z, tail='right'):

from scipy import stats

if tail == 'right':

alpha = round(1 - stats.norm.cdf(z),4) # right tailed area

else: # assume left tail

alpha = round(stats.norm.cdf(z),4) # left tailed area

return alpha

za = get_zarea(z, 'right')

print(za)

0.0228

Thus the significance level of the test with sample size 16, the probability of making Type I
error, α is 0.0228 or 2.28%. Similarly one could calculate β as below. Note, β is from alternate
hypothesis, so alternate sampling distribution N(55, 36/16)

Z =
X − µ
σ/
√
n

=
53− 55

6/
√

16

In[8]: z = get_zscore(53, 55, 6, 16)

za = get_zarea(z,'left')

print(z, za)

-1.333 0.0913

Thus the probability of making Type II error, β is 0.0913 or 9.13%.
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Adjusting α and β

Note that,

� If we decrease critical region C, then α reduces, however β increases

� If we increase critical region C, then β reduces, however α increases

� If we increase sample size n, that decreases α/sqrtn thus higher Z value implying
reduced α and β

1.3 Composite Hypothesis:

What we saw so far was simple hypothesis test, because the alternate hypothesis was simple
- Ha : µ = 55. We had another process II and assumed, if not µ = 50, it only could be µ = 55.
Often, we would have situations where we are not aware of process II or there could be more such
possibilities. We could only say, if µ = 50 or not (increased or decreased). In other words, instead
of one alternate normal distribution N(55,36), we might have many, all with mean µ > 50. So
our alternate hypothesis should be Ha : µ > 50. This could happen in other direction also, that
the mean reduced leading to Ha : µ < 50. Or we may only be interested if µ changed (suggesting
Ha : µ 6= 50). If we have any such alternate hypothesis, then we would call the test as Composite
Hypothesis because it is composed of all possible alternate normal distributions.

Let us take one case Ha : µ > K, where K is any value and analyze in detail.

Example

Assume that we have a population distribution which is normal with unknown mean µ but known
variance σ2 = 100. Say we are testing the simple null hypothesis H0 : µ = 60 against the composite
alternative hypothesis H1 : µ > 60 with a sample mean X based on n = 52 observations. Suppose
that we obtain the observed sample mean of x = 62.75. Our situation is depicted below.

We assume our sampling distribution is N(60, 100) (that is, assuming null hypothesis is true),
and then wondering what is the probability of getting x > 62.75. Note few things carefully.

� We did not ask, what is P (X = 62.75) like we did in discrete distribution earlier. It is 0 for
continuous anyway.



CHAPTER 1. TESTING HYPOTHESES ABOUT A MEAN 8

� We did not ask, what is P (60 < X < 62.75), our sample mean is greater than assumed mean,
so if we assume null hypothesis, then this is definitely a higher probability as shown in blue
above, reinforcing null hypothesis again.

� We could have done a continuity correction around X = 62.75, but we need to derive more.
If you recall earlier example, we said if x > 53 we assume alternate hypothesis µ = 55 to be
true. Similarly, here, we need to define critical region, and if we get sample mean x within
that, we assume alternate hypothesis to be true (thus establishing our chances to commit
Type I error)

If we assume critical region to be C {x : x ≥ 62.75}, then our probability of making Type I
error is α = P (X ≥ 62.75). We could find that using Z score.

Z =
X − µ
σ/
√
n

=
62.75− 60

10/
√

52
= 1.983

∴ P (X ≥ 62.75) = (Z ≥ 1.983) = 0.024 (1.1)

So if we decide critical region, C = {x : x ≥ 62.75}, then our α would be 0.024. That is, there
is about 2.4% chance of making Type I error.

Typically, the α is decided up front. For eg, we would say, 5% probability allowed to make Type
I error for the problem at hand. This means, α = 0.05. We could then go in reverse, to calculate
the value beyond which we could declare critical region.

α = 0.05 =⇒ Zα = 1.645 because , P (Z ≥ 1.645) = P (Z ≥ Zα) = 0.05

X = Z
σ√
n

+ µ = 1.645
( 10√

52

)
+ 60 = 62.281

P (Z ≥ Zα) = P (X ≥ 62.281) = 0.05 (1.2)
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Since our given permitted α is 0.05, our permitted critical region C is x : x ≥ 62.281. That is,
if we get a sample mean x ≥ 62.281 we would reject null hypothesis and take alternate hypothesis,
even when there is 5% chance of committing Type I error. The sample mean we got was x = 62.75,
which had α = 0.024. There is only a 2.4% probability that, the sample mean could be ≥ 62.75.
Since 2.4% is within the permissble range of 5%, we reject the null hypothesis H0 : µ = 60 and
support alternate composite hypothesis Ha : µ > 60.

Now how we have traversed from the notion of quoting extreme low probability for sample
set for rejection to a pre determined level for rejection α, and simply accept or reject based on if
sample set probability fell within that region or not. Understandably, the α should be typically set
by problem domain experts who have enough expertise to trade off between Type I and II errors.
(Decreasing Type I probability may increase Type II probability, etc).

By the way, the earlier α we got from sample set is called p-value to differentiate it from preset
α

Equations 1.1 and 1.2 could be further condensed as, if Z denotes the Z score of sample mean,

Z =
(X − µ
σ/
√
n

)
, then if, Z ≥ Zα, reject null hypothesis.

From 1.2 we could also write,

P (Z ≥ Zα) = P

(
X − µ
σ/
√
n
≥ Zα

)
= 0.05 (1.3)

Example

A researcher is testing the hypothesis that consuming a sports drink during exercise improves
endurance. A sample of n = 50 male college students is obtained and each student is given a series
of three endurance tasks and asked to consume 4 ounces of the drink during each break between
tasks. The overall endurance score for this sample is M = 53. For the general population of male
college students, without any sports drink, the scores for this task average µ = 50 with a standard
deviation of σ = 12. Can the researcher conclude that endurance scores with the sports drink are
significantly different than scores without the drink? Assume α = 0.05

Solution:
Given population has µ = 50, σ = 12. It is not known if its normal, but sample size n = 50 is

> 30, so good enough to consider the resultant sampling distribution of sample means from this
population to form a normal distribution N(µ = 50, S2 = σ2/n = 122/50). Given sample set has
sample mean x = 53. Our null hypothesis would be H0 : µ = 50. Alternate is Ha : µ 6= 50.
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As first step, we will try to define a temporary critical region. Since we are interested not in
µ increase, but change, it could be both µ increasing or decreasing. That is, we have to define
critical region for both directions. Taking the delta δ = 53 − 50 = 3 on left side also, we could
now establish a temporary critical region C: {x : x ≤ 47 or x ≥ 53}. If a new hypothetical
sample mean falls within this C, we would reject null hypothesis and take alternate hypothesis.
Our situation is depicted below.

Let us transform the above assumed sample distribution (provided null hypothesis is true) to
Z distribution to get the respective probabilities.

For x = 53, Z53 =
x− µ
σ/
√
n

=
53− 50

12/
√

50

For x = 47, Z47 =
x− µ
σ/
√
n

=
47− 50

12/
√

50

In[13]: def get_Zscore_1(x_bar, mu, sig, n):

num = x_bar - mu

from math import sqrt

den = sig/sqrt(n)

return round(num/den, 4)

def get_Z_1(zs, tail='right'):

from scipy.stats import norm

if tail == 'left':

return round(norm.cdf(zs),4)

else:

return round(1- norm.cdf(zs),4)

mu, sig, n = 50, 12, 50

zs = get_Zscore_1(53, mu, sig, n)

a1 = get_Z_1(zs,'right')

print('z_53:{}, area:{}'.format(zs,a1))

zs = get_Zscore_1(47, mu, sig, n)

a2 = get_Z_1(zs,'left')

print('z_47:{}, area:{}'.format(zs,a2))

print('Total area:{}'.format(a1+a2))

z 53:1.7678, area:0.0385

z 47:-1.7678, area:0.0385

Total area:0.077

Thus (Z47, Z53) = (−1.7678, 1.7678). The total probability area would be P (Z ≥ 1.7678) +
P (Z ≤ −1.7678). The probability area of each tail would be 0.0385, thus total area, which is
p-value would be 0.077
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∴ P (X ≥ 53 ∪ X ≤ 47) = P (Z ≥ 1.7678 ∪ Z ≤ −1.7678)

= P (Z ≥ 1.7678) + P (Z ≤ −1.7678)

= 0.0385 + 0.0385

= 0.077

We could straight away conclude from above finding. We are given α = 0.05 which is the total
allowed probability for making Type I error. If we select C as C: {x : x ≤ 47 or x ≥ 53} , our
probability of making Type I error would be 0.077 which is greater than allowed 0.05 limit. Thus
right away, we could fail to reject null hypothesis H0, which is same as concluding there is no
significant evidence to believe there is change in the mean.

We could also have concluded right away from Z value. Note total area allowed α = 0.05. This
means, tail end probabilities on both ends should be 0.025, so they add up to 0.05. We could easily
find the respective Z value as Z0.025 = Zα/2 = 1.96.

Since Z53 < Zα/2, it is already evident, Z53 occupies more probability area. Similarly, Z47 >
−Zα/2, Z47 is occupying more area. In simpler terms,

| ± 1.7578| < | ± 1.96| =⇒ |Z| < |Zα/2| =
∣∣∣X − µ
σ/
√
n

∣∣∣ < |Zα/2| and we fail to reject null

hypothesis H0

Generalizing, we could write as, for two tailed situation,

P (|Z| ≥ |Zα/2|) = P

(∣∣∣X − µ
σ/
√
n

∣∣∣ ≥ |Zα/2|
)

= 0.05

∴ If
∣∣∣X − µ
σ/
√
n

∣∣∣ ≥ |Zα/2|, reject null hypothesis H0

Table 1.1. When σ known, and n ≥ 30

H0 Ha Tail Reject H0 when..

µ = µ0 µ > µ0 Right Z ≥ Zα

µ = µ0 µ < µ0 Left Z ≤ −Zα

µ = µ0 µ 6= µ0 Both |Z| ≥ Zα/2
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1.4 When σ is unknown or small sample size

In reality, σ is also often unknown, thus like we did in confidence intervals, we could use the
student’s t distribution to evaluate the hypothesis test. As before in confidence intervals, this goes
without proof for now. Also when the sample size is small n ≤ 30, we use t distribution.

Thus, if S represents sample standard deviation, the right tail example from 1.3, becomes,

P (t ≥ t(α,n−1)) = P

(
X − µ
S/
√
n
≥ t(α,n−1)

)
= 0.05 (1.4)

Similary, for left and double tailed examples, we would have,

P (t ≤ −t(α,n−1)) = P

(
X − µ
S/
√
n
≤ −t(α,n−1)

)
= 0.05

P (|t| ≥ |t(α,n−1)|) = P

(∣∣∣X − µ
S/
√
n

∣∣∣ ≥ t(α,n−1)

)
= 0.05

It is not needed to remember the above formula, one could always just reason them out. Let us
try a left tail example since we have not yet done that.

Example

Bags of a certain brand of tortilla chips claim to have a net weight of 14 ounces. The net weights
actually vary slightly from bag to bag and are normally distributed with mean µ. A representative
of a consumer advocacy group wishes to see if there is any evidence that the mean net weight is less
than advertised. For this, the representative randomly selects 16 bags of this brand and determines
the net weight of each. He finds the sample mean to be X = 13.82 and the sample standard deviation
to be S = 0.24. Use these data to perform an appropriate test of hypothesis at 5% significance level.

Solution
Given population N(µ = 14, σ2). Sample set n = 16. Thus Sampling distribution will be

N(µ = 14, σ2/16)
Given Sample set has x = 13.82, s = 0.24
Given α = 0.05

Forget about the formula. Only thing we need to remember is, we need to use t distribution
because, σ is unknown and n < 30. Note even if either of the case, we would still have to use t
distribution.

Let us start with defining critical region and thus arriving at our probability of making type
I error, if we choose the critical region C to be {x : x ≤ 13.82}. Our situation is depicted below.
The area is so small its barely visible.

https://www.utdallas.edu/~mbaron/3341/Practice12.pdf
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Note: The above t distribution was just a shifted and scaled one from standardized distribution

with single sample standard deviation value t =
x− 14

0.24/
√

16
for illustrative purposes. However

in reality, for each sample set calculated, teh sample standard deviation obviously varies, but

the resulting histogram of ’t’ values calculated as t =
x− 14

s/
√

16
would resemble a standardized t

distribution 1 As per our temporary critical region, if x ≤ 13.82 we would say, the µ has decreased.
Let us calculate the probability of committing Type I error, if we do so, which is P (X ≤ 13.82).
To do that, we will proceed to calculating the t score.

In[45]: def get_tscore_1(x_bar, mu, s, n):

num = x_bar - mu

from math import sqrt

den = s/sqrt(n)

return round(num/den, 4)

def get_t_1(zs, df, tail='right'):

from scipy.stats import t

if tail == 'left':

return round(t.cdf(zs, df),4)

else:

return round(1- t.cdf(zs, df),4)

mu, s, n = 14, 0.24, 16

ts = get_tscore_1(13.82, mu, s, n)

a1 = get_t_1(ts,n-1,'left')

print('t_p:{}, area:{}'.format(ts,a1))

t p:-3.0, area:0.0045

∴ P (X ≤ 13.82) = P (t ≤ −3) = 0.0013 (1.5)

The standard t distribution with this area is depicted below.

1https://youtu.be/rePsvdAxwX8
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Our probability of making a Type I error is only 0.0045 from the sample set, which is allowable
under the limits of 0.05. That is, p value < α. So we could reject the null hypothesis H0 and say
there is significant evidence for Ha, or that µ has decreased. You see, we did not even find tα,15,
but for the sake of sticking to formula, we could find that and conclude as well. Finding the area
helps better, because area is always positive so easy to compare.

In[47]: def get_tscore_2(sl, df, tail='left'):

from scipy.stats import t

if tail == 'left':

return round(t.ppf(sl, df),4)

else:

return round(1- t.ppf(sl, df),4)

print(get_tscore_2(0.05,15,'left'))

-1.7531

Thus, P (−3 < −1.7531), that is, P (t < t(α,15)), we could reject null hypothesis.
Summaring for all cases,

Table 1.2. When σ unknown, and/or n < 30

H0 Ha Tail Reject H0 when..

µ = µ0 µ > µ0 Right t ≥ t(α,n−1)

µ = µ0 µ < µ0 Left t ≤ −t(α,n−1)

µ = µ0 µ 6= µ0 Both |t| ≥ t(α/2,n−1)

Tips to remember

It is always better to stick to calculating area to compare p-value with significance level.
The signs in the formula could be confusing because often it is not obvious if right tail or left
tail convention is used. In above example, t(α,15) was -1.7531, but in above table, we wrote
t ≤ −t(α,n−1), where, t(α,n−1) meant 1.7531



Chapter 2

Testing the difference between two
means

Note the pre requisite to understand below material is to know confidence intervals for difference
between two means as we straight away use the definitions from there. In fact, entire hypothesis
testing concept is always understood better after learning confidence intervals and is the typical
order in many textbooks.

2.1 σ known, sample sizes are high

Suppose that we are interested in comparing two approximately normal sampling distributions
described by random variables X = N(µx, σ

2
x) and Y = N(µy, σ

2
y), created from population distri-

butions described by random variables X(µx, σ
2
x) and Y (µy, σ

2
y). Note that X represents collection

of sample means from sampled sets sampled from X and similarly for Y . Since both X and Y are
normally distributed, and assuming both are independent to each other, the distribution W = X−Y
would be again a normal distribution W (µw, σ

2
w), where µw = µx − µy and σ2w = σ2x + σ2y .

Then, we already know the confidence intervals could be calculated as below.

P

(
− zα

2
≤ (X − Y )− (µx − µy)√

σ2
x
n +

σ2
y

m

≤ zα
2

)
≈ 1− α

For Hypothesis testing, let the problem at hand is to wonder, if one mean is greater than the
other. For eg, if µx > µy. This is another way of saying if µw > 0. Then we could formulate our
hypothesis as follows.

Null hypothesis: H0 : µw = 0
Alternate hypothesis: Ha : µw > 0

15
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Then the probability of making Type I error α, would be right hand tail area as follows. Note
zα

2
becoming zα as now its one side area we are interested in.

P (w ≥ µw + zασw) = α

P (w − µw ≥ zασw) = α

P
(w − µw

σw
≥ zα

)
= α

P

(
(X − Y )− (µx − µy)√

σ2
x
n +

σ2
y

m

≥ zα

)
= α

Since our null hypothesis is µw = 0 or µx = µy, we could reduce the equation further as,

P

(
X − Y√
σ2
x
n +

σ2
y

m

≥ zα

)
= α (2.1)

So if Z score of difference between sample means Z =
X − Y√
σ2
x
n +

σ2
y

m

, then the probability of making

Type I error α is P (Z ≥ zα). This is depicted below.

So if the calculate Z score from the sample set values (x, y) exceeds zα we could straight away
reject null hypothesis because there is a stronger evidence that the alternate could be true. And
we could derive similar Z score for µ decreasing or unequal, but it is much easier to directly tackling
the problem than complicating the formula.

2.2 Visual Summary

Since we use the same components of confidence intervals in hypothesis testing, it helps to recall
once the visual summary we have seen there.
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Start

(σx, σy)
known?

(n,m) >
30?

σx == σy?

Use z

σw =

√
σ2
x
n +

σ2
y

m

Use z

σw =

√
s2x
n +

s2y
m

Use t

r =
(
s2x
n
+
s2y
m

)2

1
n−1

(
s2x
n
)2+ 1

m−1
(
s2y
m

)2

σw =

√
s2x
n +

s2y
m

Use t

r = n + m − 2

σw =

Sp

√
(n−1)s2x+(m−1)s2y

n+m−2

Sp =
√

1
n + 1

m

yesPR1

no

yesPR2

no

yesPR3

no

Welch’s tPR4

2.3 Examples

2.3.1 σ unknown, sample sizes are high

As seen in visual summary (PR2), in this case, we still could use Z distribution, while we use
sample set’s unbiased standard deviations (sx, sy) in the place of (σx, σy) as best estimators. Since
sample sizes are high, due to CLT, the sampling distribution would still be approximately normal,
and our hypothesis testing approximately valid.

Lets assume we have two different ways to lose wieght, and we have to figure out which one is
the most effective. We have 10000 people who received treatment A and their average loss is 10
pounds. The standard deviation of their loss is also 10 pounds. Lets consider a second treatment,
Treatment B. We also applied it to 10000 people. The average loss in this case is 20 pounds and
we also have a standard deviation of 20 pounds. Allowed false positive rate is 5%

Also given is, null hypothesis H0 : µA = µB
Alternate hypotheis is Ha : µB > µA
Solution

https://youtu.be/L3s-jrNJ3KQ
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Whoa! Sample sizes are so high >>> 30. Also W = B −A as we take the hint from alternate
hypothesis. So we could rewrite equation 2.1 as per PR2 in context as below

P

(
B −A√
S2
B
n +

S2
A
m

≥ zα

)
= α (2.2)

Given:
B : n = 10000, b = 20, sB = 20

A: m = 10000, a = 10, sA = 10
5% False positive rate would mean, we could be false 5% of the time while reality is true. This

is type I error (rejecting null hypothesis, when null hypothesis is true in reality). Thus, α = 0.05.
So what would be zα = z0.05?

In[7]: import scipy.stats as st

z_a = st.norm.ppf(1-.05) # as scipy is left tailed by default

print(z_a)

1.6448536269514722

Therefore, zα = z0.05 = 1.645.
Let us try to create temporary critical region for W. Our given sample value w = 20− 10 = 10.

We could say, if our hypothetical next sample means are if or above 10, we would reject the null
hypothesis, and then wonder if that is the case, what would be our probability of making Type I
error? Will we be in allowed limit of 0.05?

Note that, the critical region for permissible Type I probability of α starts at (µw + z0.05σw).
Since this is when null hypothesis is assumed, it is z0.05σw which is about 0.367. So any difference
beyond 0.367, we could simply reject null hypothesis, that µA = µB.

In[8]: s_a, s_b, n, m = 10, 20, 10000, 10000

from math import sqrt

s_w = sqrt( (s_a**2)/m + (s_b**2)/n )

print(s_w)

print(s_w*z_a)

0.22360679774997896

0.3678004522900572

This situation is depicted below (not drawn at scale on x axis)
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Now it would be evident beyond doubt that, we are well within permissible limits of 0.05 for
making Type I error, which in fact is almost 0, to choose to reject null hypothesis, and suggest
µB > µA. If we deployed equation 2.2 also we would have arrived at same conclusion. We could
verify that as well. Rewriting 2.2,

P

(
b− a√
s2B
n +

s2A
m

≥ 1.645

)
= 0.05

Recall, once the sample set is observed, there is no more probability about it. The calculated
Z value is either above Zα or not.

In[10]: b_bar, a_bar = 20, 10

zs = (b_bar - a_bar)/s_w

print(zs)

44.721359549995796

Our Z score 44 >> 1.645, so this again means, while the probability of Z score to be ≥ 1.645 was
just 5%, provided null hypothesis was true. Looking at the rarity of this outcome if null hypothesis
is true, it would be sane to conclude that this is a strong evidence that alternate hypothesis might
be true. This strongly supports alternative hypothesis. This is depicted below (x axis not drawn
at scale)

We are thus in a very good position to reject null hypothesis and support alternate hypothesis
Ha : µB > µA

2.3.2 σ unknown, unequal and sample sizes are low

As seen in visual summary, we need to use PR4, that is Welch’s t interval. Note the cumbersom
calculation for calculating degrees of freedom. Some textbooks or platforms like Khan, 1 take

1https://www.khanacademy.org/math/ap-statistics/two-sample-inference/two-sample-t-test-means/v/two-
sample-t-test-for-difference-of-means
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conservative approach, that is, taking degrees of freedom r = min(n,m). Nevertheless we will try
to use Welch’s and see what we get.

Independent random samples of 17 sophomores and 13 juniors attending a large university yield
the following data on grade point averages.At the 5% significance level, do the data provide sufficient
evidence to conclude that the mean GPAs of sophomores and juniors at the university differ?

Sample Data:
sophomor: n = 17, x = 2.84, sx = 0.520
juniors: m = 13, y = 2.9808, sx = 0.3093

Solution:
The problem wonders if both the means differ so we would need to consider both tails.
Null hypothesis: µw = 0 or µx = µy

Alternate hypothesis: µw 6= 0 or µx 6= µy
α = 0.05.

In welch’s method, the degrees of freedom, r is the complicated one to calculate. It is given by
integer part of below equation.

r =
( s

2
x
n +

s2y
m )2

1
n−1( s

2
x
n )2 + 1

m−1(
s2y
m )2

In[13]: s_x, s_y, n, m = 0.52, 0.3093, 17, 13

num = ( s_x**2/n + s_y**2/m )**2

den1 = (1/(n-1))*( s_x**2/n )**2

den2 = (1/(m-1))*( s_y**2/m )**2

den = den1+den2

r = num/den

print(r)

26.629678365237567

The degrees of freedom is the integer part of our result 26.629 which is r = 26. Let us then
calculate the ’t’ score for our significance level α,

https://onlinecourses.science.psu.edu/stat500/node/50/
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In[14]: from scipy import stats

ts = stats.t.ppf(0.025, 26) # return value is left tailed by default..

print(ts)

-2.0555294386428713

Therefore, t(α/2,r) = t(0.025,26) = 2.055. We could now calculate the limits above or below which
Type I error is allowed. Assuming µw = 0 due to null hypothesis, t(0.025,26)σw should give us the
limits.
In[15]: from math import sqrt

s_w = sqrt( (s_x)**2/n + (s_y)**2/m )

print(s_w, s_w*ts)

0.15252817156896606 -0.31352614688238034

Thus our critical region for given α would be ±0.313. Our situation could be depicted as below.
We are allowed to reject null hypothesis, if our sample set mean difference is above 0.313 or below
-0.313, with α = 0.05 probability of making Type I error.

The difference of sample means we got is x − y = 2.84 − 2.9808 = −0.1408. This is far above
-0.313, so we cannot reject null hypothesis. Taking ±0.1408 as critical region would increase
of probability of Type I error α enormously as shown below.
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We could have also taken the difference the other way y − x = 2.9808− 2.84 = 0.1408, and we
still would have arrived at same conclusion because we are interested in only if the sample means
of two sampling distributions differ or not (that is why two tails taken in above diagram).Also
we could arrive at the same conclusion via ’t’ values only if we already know tα/2,r. We indeed
calculated that earlier as 2.055. This means, in units of ’t’, critical region allowed is ±2.055 beyond
which we are allowed to make Type I error, whose total probability in critical region would be 0.05.
This is depicted below.

P
(
− t(α/2,r) ≤

W − µw
σw

≤ t(α/2,r)
)

= 1− α

2P
(∣∣∣W − µw

σw

∣∣∣ ≥ |t(α/2,r)|) = α

P
(∣∣∣W − µw

σw

∣∣∣ ≥ |t(α/2,r)|) =
α

2

P
(∣∣∣W − µw

σw

∣∣∣ ≥ |t(0.025,r)|) = 0.025

P
(∣∣∣W − µw

σw

∣∣∣ ≥ |t(0.025,26)|) = 0.025

P
(∣∣∣W − µw

σw

∣∣∣ ≥ 2.055
)

= 0.025

P

(∣∣∣∣∣(X − Y )− (µx − µy)√
s2x
n +

s2y
m

∣∣∣∣∣ ≥ 2.055

)
= 0.025

P

(∣∣∣∣∣ (X − Y )√
s2x
n +

s2y
m

∣∣∣∣∣ ≥ 2.055

)
= 0.025

When the sample set is observed, we could check if we are in critical region or not by calculating
its t score.

t =

∣∣∣∣∣ x− y√
s2x
n +

s2y
m

∣∣∣∣∣ =
∣∣∣2.84− 2.9808

0.1525

∣∣∣ = 0.9232

Our t score is 0.9232. This is well outside the critical region towards the null hypothesized zero
mean difference, so if we assume this as critical region, we would be making high Type I error,
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beyond 0.05 as depicted below.

So our conclusion is similar like earlier. We cannot reject the null hypothesis.



Chapter 3

Testing hypotheses about a
proportion

As seen earlier in confidence intervals, using Wald’s method for the sample proportions do not
yield promising results as widely believed. So we will only stick to case when conditions are met
to make the sampling distribution normalcy good enough.

3.1 When sample sizes are high

Suppose that we have a normal sampling distribution described by random variable
Y

n
=

N
(
p1,

p1q1
n

)
created from a population distribution which is a Bernoulli distribution with mean

p1 and standard deviation p1q1. Note that Y represents the sum of successes in a sample set, and

thus
Y

n
represents sample proportions. For example, for any kth sample set of

Y

n
, we calculate

sample proportion statistic,
Yk
n

=
1

n

n∑
i=1

Yki, where Yki is ith sample in kth sample set of sampling

distribution described by
Y

n
. If α is the significance level, then we could derive the conditions

for hypothesis testing as follows. Below is our sampling distribution as null hypothesis, with α as
significance level. This is for alternate hypothesis being Ha : µ > µy/n so we consider the right tail
area. One could try similar approach for left or both tails depending on if Ha is Ha : µ < µy/n or
Ha : µ 6= µy/n respectively.

The significance level α, corresponds to the rest of 1−α area, that is green area as shown above.

24



CHAPTER 3. TESTING HYPOTHESES ABOUT A PROPORTION 25

P
(Y
n
≥ µy/n + zασy/n

)
= α

∴ P

( Y
n
− µy/n
σy/n

− ≥ zα

)
= α

P

( Y
n
− p1√
p1q1
n

− ≥ zα

)
= α

Let the z score be, z =
Y
n − µy/n
σy/n

, then P (z ≥ zα) = α

Our allowed critical region in sampling distribution is (µy/n+zασy/n,∞), where the probability
of making Type I error is α. Our allowed critical region in standardized sampling distribution would
be (zα,∞). So if our z score falls within (zα,∞), we could reject the null hypothesis. This is also
equivalent to saying, if our sample set proportion y/n falls within (µy/n + zασy/n,∞), we could
reject the null hypothesis.

Conditions

� One of the main condition to apply hypothesis testing to sample proportions is to
ensure the sampling distribution is normal. This is usually ensured when (np, nq) > 10
if not population is already normal.

� You see, unlike sample means, there was no σ not known case in proportions, because
we are testing against hypothesized mean p1, so the associated σ would be simply√
p1q1. So p1 is a pre requisite against which we need to test, so that is usually given

or implicit in case of one proportion, so no σ unknown case arises here.

Example

It was claimed that many commercially manufactured dice are not fair because the “spots” are
really indentations, so that, for example, the 6-side is lighter than the 1-side. To test, in an
experiment, several such dice were rolled, to yield a total of n = 8000 observations, out of which
6 resulted, 1389 times. Is there a significant evidence that dice favor a 6 far more than a fair die
would? Assume α = 0.05

Solution:
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Let us assume null hypothesis as a fair die, nothing to doubt about. The probability of getting
a 6 in fair die is p = 1/6. So

H0 : µy/n = p = 1/6
Ha : µy/n = p 6= 1/6

We have a sample size of n = 8000, so np = (8000)(1/6) = 1333 >> 10, nq = (8000)(5/6) =
6666 >> 10, so our normal condition is met. If we continue with sample sets of this size, we would

get a good normal sampling distribution
Y

n

Our z score is z =
Y
n − p1√

p1q1
n

=
(1389/5000)− (1/6)√

(1/6)(5/6)
8000

In[11]: Y,n,p_1,q_1 = 1389, 8000, 1/6,5/6

num = (Y/n) - (p_1)

from math import sqrt

den = sqrt(p_1*q_1/n)

zs = round(num/den, 4)

print(zs)

1.67

Our allowed critical region starts from z0.05 = 1.645. The z score z = 1.67 is greater that
that, which means, if we select this sample set as critical region’s starting point, our probability of
making Type I error is smaller than allowed α = 0.05. So we reject the null hypothesis , thus
suggesting there is stronger evidence for alternate Ha.
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3.2 Conditions Summary

Start

(np, nq) >
10?

Stop

Use z

σy =
pq

n

yesPR1

no



Chapter 4

Testing the difference between two
proportions

4.1 When Successes and Failures are high enough

4.1.1 (p1, p2) known

Suppose that we are interested in comparing two approximately normal sampling distributions

described by random variables
Y1
n1

= N
(
p1,

p1q1
n1

)
and

Y2
n2

= N
(
p2,

p2q2
n2

)
, created from population

distributions which are Bernoulli distributions. Note that Y1 represents the sum of successes in a

sample set, and thus
Y1
n1

represents sample proportions. For example, for any kth sample set of
Y1
n1

,

we calculate sample proportion statistic,
Y1k
n1

=
1

n

n∑
i=1

Y1ki, where Y1ki is ith sample in kth sample

set of sampling distribution described by
Y1
n1

. Similarly for
Y2
n2

. Then, if no of success and failures

are high enough 1, that is at least > 10, as a general rule, we could assume that the random variable

W =
Y1
n1
− Y2
n2

has approximately normal distribution W = N(pw, σ
2
w) where pw = p1 − p2 and

σw =

√
p1q1
n1

+
p2q2
n2

and has shown below, before standardization to Z. We destandradize from Z,

because, each α could be linked to corresponding z score, which further could be linked to actual
w or x axis in question.

1https://www.khanacademy.org/math/ap-statistics/two-sample-inference/two-sample-z-test-
proportions/v/hypothesis-test-for-difference-in-proportions
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The significance level α, corresponds to the rest of 1−α area, that is green area as shown above.

P (W ≥ µw + zασw) = α

∴ P
(W − µw

σw
≥ zα

)
= α

P

(
(Y1n1
− Y2

n2
)− (p1 − p2)√

p1q1
n1

+ p2q2
n2

≥ zα

)
= α

Typically, null hypothesis is p1 = p2, so, assigning it to a common p, i.e p1 = p2 = p,..

P

(
Y1
n1
− Y2

n2√
p1q1
n1

+ p2q2
n2

≥ zα

)
= α

P

(
Y1
n1
− Y2

n2√
pq( 1

n1
+ 1

n2
)
≥ zα

)
= α

Thus the z score for given sample data would be z =
Y1
n1
− Y2

n2√
pq( 1

n1
+ 1

n2
)

So if our alternate hypothesis is that Ha : p1 > p2, then we could calculate Z score as above
and if that is beyond zα we could reject null hypothesis.

We could simlarly derive for Ha : p1 < p2, and Ha : p1 6= p2.

4.1.2 (p1, p2) unknown

Of course, the above section was for pedagogical purposes, to illustrate the concept. In reality,
the individual p1 and p2 are not hypothesized typically, and usually compared only to see if there is
significant evidence that if one is greater/smaller/different from the other. In which case we simply
could use our best estimator p̂ for calculating standard deviation in place of p. There are usually
two ways, here.

Way 1: Calculate weighted p

This is usually given as p̂ =
Y1 + Y2
n1 + n2

. And then, 4.1 beocmes
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P

(
Y1
n1
− Y2

n2√
p̂q̂( 1

n1
+ 1

n2
)
≥ zα

)
= α (4.1)

At the time of this writing, I could not find a derivation for the same, so over to next one.

Way 2: Use sample p̂1, p̂2

This is straight forward approach directly from 4.1, with p1 = p2

P

(
p̂1 − p̂2√
p̂1q̂1
n1

+ p̂2q̂2
n2

≥ zα

)
= α (4.2)

Tips

� Equation 4.2 would be the one mostly used for almost any of difference of proportions
problems (of course adapted to right or left or both tails as needed)

Example

A machine shop that manufactures toggle levers has both a day and a night shift. A toggle lever
is defective if a standard nut cannot be screwed onto the threads. Let p1 and p2 be the proportion
of defective levers among those manufactured by the day and night shifts, respectively. We shall
test the null hypothesis, H0 : p1 = p2, against a two-sided alternative hypothesis based on two
random samples, each of 1000 levers taken from the production of the respective shifts.

(a) Define the test statistic and a critical region that has an α = 0.05 significance level. Sketch
a standard normal pdf illustrating this critical region.

(b) If y1 = 37 and y2 = 53 defectives were observed for the day and night shifts, respectively,
calculate the value of the test statistic. Locate the calculated test statistic on your figure in part
(a) and state your conclusion.

This example was taken from exercise 8.3-11 in Robert et al. [1]
Solution:

Day: y1 = 37, n1 = 1000, p̂1 =
Y1
n1

=
37

1000
= 0.037

Night: y2 = 53, n2 = 1000, p̂2 =
Y2
n2

=
53

1000
= 0.053

(a)
It is said, ”two sided alternative hypothesis”, so below is our required test statistic. note we

have used our best estimators (p̂1, p̂2) so result is only approximate.
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Calculating the values σw, we could arrive at w = µw ± zα/2σw = ±zα/2σw value beyond which
we could define critical region α. Since it is double tailed, we already know z0.025 = 1.96.

σw =
√

p̂1q̂1
n1

+ p̂2q̂2
n2

=

√
(0.037)(1−0.037)

1000 + (0.053)(1−0.053)
1000

In[14]: p_1_hat, q_1_hat, p_2_hat, q_2_hat, n_1, n_2 = 0.037, 1-0.037, 0.053, 1-0.053, 1000,

1000

z_0025 = 1.96

from math import sqrt

s_w = sqrt( (p_1_hat*q_1_hat/n_1) + (p_2_hat*q_2_hat/n_2) )

print(s_w*z_0025)

0.018157472158866164

We could alreay take a call on our null hypothesis, Our p̂1−p̂2 = 0.037−0.053 = 0.016 < 0.0018,
so we cannot reject H0. Our standardized test statistic would be simply z distribution as below.

(b)
We have already kinda finished the solution, but for question’s sake we could complete it fully

by calculating the Z score.

Using 4.2, z =
p̂1 − p̂2√
p̂1q̂1
n1

+ p̂2q̂2
n2

In[19]: num = p_1_hat - p_2_hat

den = s_w

num/den
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Out[19]: -1.7271126578424703

Being double tailed operation, our z score is thus ±1.727. And since ±1.727 < ±1.96, we again
cannot reject null hypothesis because then our probability of making Type I error would be
more than allowed limit of α = 0.05. Our standardized test statistic, with ±zα/2 = ±1.727 is shown
below.

Though visibly not clear, one could use z table to find that z1.727 takes more area than 0.05
which corresponds to z1.96. Thus we conclude our answer.

4.2 Conditions Summary

Start

(Y1,Y2)>10?

(1−Y1,1−Y2)>10?
Stop

Use z

σw =√
p̂1q̂1
n1

+
p̂2q̂2
n2

yesPR1

no
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