
OpenLCB Technical Note

OpenLCB-TCP Transfer

Apr 30, 2021 Preliminary

 1 Introduction
This explanatory note contains informative discussion and background for the corresponding
“OpenLCB-TCP Segment Transfer Standard”. This explanation is not normative in any way.

This section describes carrying OpenLCB™ across a transport mechanism that is reliable (all
bytes are guaranteed to arrive in their original order) and can carry binary bytes.

Examples of this include:

• TCP/IP point-to-point links

• High-bandwidth wireless links

• Program-to-program links within computers

Reliable binary links can carry the full OpenLCB protocol. Messages are carried in full common
format.

The reliable binary wire protocol is meant to attach multiple segments of the entire OpenLCB
instance. Using this protocol, messages can be moved from one gateway to another, where one or
more additional OpenLCB nodes can be reached through the gateway(s).

It is meant for applications from attaching a single remote console to interconnecting large
modular layouts totaling 500 or more segments and 10's of thousands of devices. As such, it
must have no addressing limitations beyond those built into the OpenLCB common message
format and node serial number format.

This wire protocol makes no assumptions about the available bandwidth. In particular, it must
work, with perhaps limited effectiveness, when the link bandwidth is small compared to the
capacity on the other side of the gateways.

No assumption is made that this wire protocol is being used over point-to-point connections.
Broadcast and multicast connections between nodes via this protocol are also permitted.

 2 Annotations to the Standard
This section provides background information on corresponding sections of the Standard
document. It's expected that two documents will be read together.

Copyright 2011-. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 1 of 5 - Apr 30, 2021

5

10

15

20

25

OpenLCB-TCP Transfer Technical Note

 2.1 Introduction

 2.2 References and Context

 2.3 Message Format

The various reserved bits are allocated to preserve options for future expansion. New distinct types,
that don't overlap with the existing types, can use the “check for zero” bits. New modifier codes are
more likely, so more bits are reserved where existing implementations just ignore their content.

Flags field:

The MSB 0x8000 is an expansion flag used to (eventually) add link control messages. These might be
needed for e.g. turning gateway-filtering on and off, loading/resetting remote diagnostic information,
etc.

The 0x4000 bit indicates “chaining”: Another prefix is next, before the body of the message.

The 0x0800 and 0x0400 bits provide a way of extending a single OpenLCB message across multiple
TCP transfers. (Note that the terminology here is confusing, and should probably be clarified). This
might be used to e.g. simplify buffering and framing in CAN-Ethernet gateways. A single OpenLCB
message that extends across multiple CAN frames is best accumulated into a single TCP transmission.
If that's not possible due to buffering or other issues, it can be sent as multiple TCP transmissions using
the 0x0800 and 0x0400 bits. These two bits encode 4 types of messages: if both 0, then this is a single-
part message, if 0x0800 is clear and 0x0400 is set it is the first of a multiple part message, if both bits
are set, then it is a middle part of a multiple part message, and if 0x0800 is set and 0x0400 is clear it is
the last part of a multiple part message.

The length code is put early to make it easier to parse messages of future, unknown format. But this
doesn't make it easier to skip new prefixes of unknown length. Should there be an additional prefix
length field, so new prefix formats can be skipped easily?

 2.4 States

We don't have a “link up” state in OpenLCB itself, just in the link implementation. Is one needed?
Might enter e.g. routing. If it existed, we could define link-specific messages to check the status.

 2.4.1 Multiple-part Messages
 2.5 Interactions

The chaining process is meant to provide a bread-crumb path back through the network. OpenLCB
networks are not meant to have very complicated routing structures, so that only a few prefixes will get
added to the average message.

 2.6 TCP-specific Link Control Transmissions and Interactions

Format

Copyright 2011-. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 2 of 5 - Apr 30, 2021

30

35

40

45

50

55

OpenLCB-TCP Transfer Technical Note

 2.6.1 States
 2.6.2 Interactions

 3 General
Development of link-specific messages and interactions

 3.1 Monitoring of other protocols

There's a need to be able to pass non-common OpenLCB messages over binary links. For example, a
CAN-Ethernet bridge may want to pass CAN frames through to the Ethernet unchanged for monitoring
purposes. This includes both the CAN frame(s) that correspond to OpenLCB common messages, and
also other frames that are used for alias reservation, etc.

 3.2 Gateway-Gateway Messages

The TCP/IP gateway to gateway links effectively partition the overall OpenLCB into smaller
"segments". OpenLCB nodes in any of these must be able to communicate with each other via any
OpenLCB common message, including over intermediate wire-protocols that differ.

Gateway-to-gateway messages (will be) defined for control operations to make this communication
transparent. These messages are used to carry information between gateways on a link, and do not
propagate beyond that.

Control of gateway nodes is done via direct messages to those nodes.

Note that these are not available on e.g. CAN links.

Possible uses:

• Redirecting point-to-point links: “I'm going offline now, you should connect to him”

• Negotiating buffer sizes and traffic levels; flow control.

Control messages to individual nodes, not gateway-gateway communication, will be used for:

• Turning filtering on and off in gateways so that all messages can be forwarded

• Turning gateway message logging on and off

• Retrieving status and history information

 3.3 Rendezvous & Self-Configuration Method

(Some or all of this needs to move to the Standard)

In the following, “node” means an OpenLCB node with a native TCP connection. This node might be
e.g. a gateway to an entire CAN segment, but that doesn't matter to this discussion.

Two types of connections could be provided: “point-to-point” and “hub-and-spoke”.

In “point-to-point”, two nodes are connected by a direct TCP connection. This works fine for e.g. two
nodes, but using only point-to-point connections doesn't scale well. If there are 10 nodes present, each

Copyright 2011-. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 3 of 5 - Apr 30, 2021

60

65

70

75

80

85

90

OpenLCB-TCP Transfer Technical Note

has to maintain 9 TCP sessions, which is rapidly becoming impractical. On the other hand, it's the
simplest possible TCP code.

In the “hub-and-spoke” connection, one node acts as a “hub” and all others connect to it as “spokes”.
Each spoke node sends traffic to the hub, and the hub then forwards it to the N-2 other nodes.

 3.3.1 Protocol
When a node comes up, it enquires for a “_openlcb-hub._tcp.local.” service. If found, connect to it.

If not found, and if the node can be a hub (it's not required that all nodes be able to do that), it
configures itself to act as a hub and advertises the “_openlcb-hub._tcp.local.” service. Since all that
takes time, it then checks again for another node advertising to be a hub. If found, it drops back to
connecting to that and removes its service if the connection succeeds.

If all that fails, start advertising as “_openlcb-node._tcp.local.”. Then, check for any other node(s)
advertising as “_openlcb-node._tcp.local.” and connect to as many as possible of the ones that are
found.

 4 Relationship with Native-Ethernet Connections
Imagine you have five OpenLCB CAN segments, connected by small boxes to an Ethernet: You can
use an Ethernet-specific protocol (e.g. ala Ethertalk, etc), or you can use IP connections (probably
TCP/IP).

The TCP/IP solution seems to require more overhead, but it works about the same on a single Ethernet
segment and across multiple segments, wide area links, etc.

The Ethernet-protocol solution seems somewhat simpler (though getting a protocol certified is a lot of
work), but can't get traffic off the local Ethernet segment. It spans hubs, but not switches, and would
require another protocol for OpenLCB-specific devices to connect to the larger Internet. So although an
Ethernet-specific protocol seems simpler to create, in practice you'd still need to create Ethernet to
Internet routers, resulting in an overall increase in engineering effort.

Where Ethernet-specific protocol might be useful is in reducing the configuration load for single-
segment implementations. It would be nice if people could plug e.g. five OpenLCB CAN-Ethernet
adapters into a single Ethernet and have them find and configure themselves to interconnect. This
doesn't require new OpenLCB-specific protocols; it's much more likely that a robust solution could be
created using e.g. Bonjour (a form of ZeroConf) and similar standard protocols. Some
recommendations here would improve interoperability of implementing devices.

 4.1 CAN-ASCII Formatted Protocol

We have also used a protocol where GridConnect-format CAN frames are directly sent back and forth
to an Arduino node, which places them on the CAN bus. This is essentially an Ethernet-CAN
replacement for the popular USB-CAN adapters. These advertise themselves as “_openlcb-can._tcp.”
protocol, by convention on port 12021.

Copyright 2011-. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 4 of 5 - Apr 30, 2021

95

100

105

110

115

120

125

OpenLCB-TCP Transfer Technical Note

Table of Contents
 1 Introduction..1
 2 Annotations to the Standard...1

 2.1 Introduction..2
 2.2 References and Context..2
 2.3 Message Format...2
 2.4 States..2
 2.5 Interactions...2
 2.6 TCP-specific Link Control Transmissions and Interactions..2

 2.6.1 States...2
 2.6.2 Interactions...2

 3 General...2
 3.1 Monitoring of other protocols..2
 3.2 Gateway-Gateway Messages..2
 3.3 Relationship with Ethernet Connections..3

Copyright 2011-. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 5 of 5 - Apr 30, 2021

	1 Introduction
	2 Annotations to the Standard
	2.1 Introduction
	2.2 References and Context
	2.3 Message Format
	2.4 States
	2.4.1 Multiple-part Messages

	2.5 Interactions
	2.6 TCP-specific Link Control Transmissions and Interactions
	2.6.1 States
	2.6.2 Interactions

	3 General
	3.1 Monitoring of other protocols
	3.2 Gateway-Gateway Messages
	3.3 Rendezvous & Self-Configuration Method
	3.3.1 Protocol

	4 Relationship with Native-Ethernet Connections
	4.1 CAN-ASCII Formatted Protocol

