
OpenLCB Standard

Stream Transport

Apr 30, 2021 Preliminary

 1 Introduction (Informative)
This specification defines the protocol for transmitting unidirectional streams of data between
two nodes on an OpenLCB bus.

 2 Intended Use (Informative)
Streaming can be used to move large amounts of data (kilobytes and up) across a OpenLCB
implementation. Streaming transport can also be used when the data transfer is unknown or
indefinite in its volume or persistence.

References and Context (Normative)

This specification is in the context of the following OpenLCB Standards:

• The OpenLCB Message Network Standard, which defines the basic messages and how
they interact. Higher-level protocols are based on this message network, but are defined
elsewhere. The Message Network Standard defines the encoding of stream data message
on CAN physical layer, which is referenced here.

• The OpenLCB Memory Access Configuration Protocol Standard, which will be used as
an example of an application-level protocol that interacts with the Streaming protocol for
data transport.

 3 Definitions (Normative)
Stream is a uni-directional sequence of bytes transmitted from one OpenLCB node to another
OpenLCB node. There is no out-of-band information that can be sent along with the payload
using the Streaming protocol. There is no restriction on the total number of bytes sent, or the
time that the stream can be open for sending data.

Source node is the OpenLCB node which is sending the data (originating the stream).

Destination node is the OpenLCB node which is receiving the data.

Source Stream ID (SID) is a one-byte (8-bit) identifier (range [0..254], reserved [255]),
assigned by the source node at its discretion to identify the stream.

Destination Stream ID (DID) is a one-byte (8-bit) identifier (range [0..254], reserved [255]),
assigned by the destination node at its discretion to identify the stream.

Copyright 2014. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 12 - Apr 30, 2021

Copyright 2011-. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 1 of 12 - Apr 30, 2021

5

10

15

20

25

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

Stream Content UID is a non-zero 6-byte globally unique identifier assigned to specify the type
(format and purpose) of the data being transmitted. Stream Content UIDs are assigned in a similar
fashion as Node IDs, but from a different numeric space.

(Max) Buffer size is an unsigned 2-byte value (range [1..65535]) specifying the maximum number of
bytes in-flight; that is, the maximum number of bytes the source node may send without receiving a
reception acknowledgement from the destination node.

 4 Message Formats
In the following, the “common MTI” column specifies the MTI value to be used when communicating
in OpenLCB common format. The Common MTI is an abstract numeric description intended as a
normative guide to the construction of concrete message formats over specific physical transport
media.

 4.1 Stream Initiate Request

Stream Initiate Request is an addressed message sent by the Source node to the destination node to
request creating the stream. This is the only method to create a stream. The Destination Stream ID is
only to be suggested if previously negotiated with the destination node using some other prerequisite
protocol.

Data content:

Name Dest
ID

Event
ID

Common
MTI

Data Content

Stream Initiate
Request

Y N 0x0CC8 6 or 12 bytes

Byte 0 Suggested Destination Stream ID, else 0xFF
if none is to be suggested.

Byte 1 Source Stream ID, value 0xFF is reserved.

Bytes 2-3 Max Buffer Size (proposed by source).

Byte 4 Flags:

LSB (bit 0): Deprecated, send as 0, check
upon receipt.

bit 1-7: Reserved, send as 0, check on
receipt.

Byte 5 Additional Flags:

Reserved, send as 0, ignore on receipt.

Bytes 6-11 Optional: Stream Content Type.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 2 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 2 of 12 - Apr 30, 2021

30

35

40

5

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

 4.2 Stream Initiate Reply

Name Dest
ID

Event
ID

Common
MTI

Data Content

Stream Initiate
Reply

Y N 0x0868 6 bytes + optional error string

Byte 0 Destination Stream ID, value 0xFF is
reserved.

Byte 1 Source Stream ID, value 0xFF is reserved.

Byte 2-3 Max Buffer Size (final value), or zero if the
request is rejected.

Bytes 4-5 Error code:

0x8000 for accept, no errors

0x1000 Permanent error, specifically:

• 0x1040 streams not supported

• 0x1020 source not permitted

• 0x1010 unimplemented

• others reserved, do not send

0x2000 temporary error, specifically:

• 0x2040 unexpected, out of
order, or inconsistency in the
message or frame sequence
received.

• 0x2020 buffer unavailable

• others reserved, do not send

0x0001 may be logically or'd with
any of the above error codes to
indicate the incident is available in a
log (see the Logging protocol for

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 3 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 3 of 12 - Apr 30, 2021

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

more information).

 4.3 Stream Data Send

Name Dest
ID

Event
ID

Common
MTI

Data Content

Stream Data
Send

Y N 0x1F88 1 – <Max Buffer Size + 1> Bytes

Byte 0 Destination Stream ID, value 0xFF is
reserved.

Byte 1 ... Stream payload bytes.

 4.4 Stream Data Proceed

Name Dest
ID

Event
ID

Common
MTI

Data Content

Stream Data
Proceed

Y N 0x0888 2 Bytes

Byte 0 Destination Stream ID, value 0xFF is
reserved.

Byte 1 Source Stream ID, value 0xFF is reserved.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 4 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 4 of 12 - Apr 30, 2021

45

10

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

 4.5

 4.6 Stream Data Control

Name Dest
ID

Event
ID

Common
MTI

Data Content

Stream Data
Control

Y N 0x08A8 2 or 6 Bytes

Byte 0 Destination Stream ID, value 0xFF is
reserved.

Byte 1 Source Stream ID, value 0xFF is reserved.

Byte 2 Type (bits 0..3):

0x0: reserved

0x1: ping

0x2: pong

0x3: completed

0x4: abort

Flags (bits 4..7):

0x1: 1 if this message is from the
stream source to stream destination, 0
if this message is from the stream
destination to the stream source.

0x2: 1 if payload count is valid, 0 if
payload count is not valid.

0x4: reserved

0x8: 1 if stream closed, currently
only valid for a pong type, all other
types must send 0 and ignore upon
receipt.

Bytes 3-5 Number of payload bytes transferred in total
(sum of all data segments) % 224.

 5 States (Normative)
A stream can be in one of the following states:

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 5 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 5 of 12 - Apr 30, 2021

50

15

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

Non-existent or closed. Between the nodes <Source Node ID> → <Destination Node ID> both the
Source Stream ID and the Destination Stream ID have never been used or the Stream according
to the last use was completed or terminated.

Announced. The Source node has sent the Source Stream ID to the Destination node via some higher-
level protocol, such as in a Memory Configuration Protocol datagram 'Read Stream Reply', or
'Write Stream Command'.

Initiated. The Source node has sent a Stream Initiate Request to the Destination node with the Source
Stream ID, and is waiting for a response.

Open. The Destination node has sent a Stream Initiate Reply to the Source node with the Source
Stream ID and the Destination Stream ID and the error code set to Accepted.

 6 Interactions (Normative)
 6.1 Opening a stream with announcement

In this method the streaming protocol works together with a higher-level protocol. It is the higher-level
protocol that requests the transfer, and defines the format, contents and possibly the length of the
stream payload. As part of handling the higher-level protocol, the Source node has to know the
Destination node ID, and allocate a Source Stream ID for that Destination node that is in the Closed /
Non-existent state. The Source node transmits the Source Stream ID to the Destination node in an
addressed message of the higher-level protocol. The Source node then waits for a reception
acknowledgement of the higher-level protocol (such as a Datagram Received OK) from the Destination
node. If this acknowledgement is positive, the Stream transitions to the Announced state, if it returns an
error, the Stream is considered to be in the Closed state. If the Destination node can not handle the
streaming protocol, it should return an error in the higher-level protocol.

After the acknowledgement of the reception of the announcement message, the Source node sends a
Stream Initiate Request to the Destination node, with the same Source Stream ID as in the
announcement message. The Source node may pass or omit the Stream Content Type in the Stream
Initiate Request, as the higher-level protocol specification requires. The Source node proposes a Max
Buffer Size for the transmission. Sending this message transitions the stream to the Initiated state.

The Destination node is then required to send a Stream Initiate Reply, or one of the general error
messages defined in the Message Network Standard, such as Optional Interaction rejected, or
Terminate Due To Error. When possible, a Stream Initiate Reply should be sent instead of a general
error message.

To accept the stream and transition to Open state, the Destination node must allocate a Destination
Stream ID that's not currently in use with the same Source node, reply with a Stream Initiate Reply
message, with the error code having the Accept bit set, the Source Stream ID set to the stream ID sent
by the Source node, the Destination Stream ID filled in, and the Max Buffer Size set to a non-zero
value that is at less, than or equal to what was proposed in the Stream Initiate Request. Sending this
message transitions the stream to Open state, with the Max Buffer Size as entered in the Stream Initiate
Reply message.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 6 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 6 of 12 - Apr 30, 2021

55

60

65

70

75

80

85

90

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

To reject the stream, the Destination node must send a general error message, or a Stream Initiate
Reply message with the appropriate Source Stream ID, zero Max Buffer Size and the error code set to a
value with the Accept bit clear and one of the Temporary error or Permanent error bits set. When
possible, a Stream Initiate Reply should be sent instead of a general error message. When sending a
general error message, when possible, the MTI value should be set to the MTI of Stream Initiate
Request. A rejected stream is transitioned to the Closed state. If needed, the interaction may be re-
started using the higher-level protocol.

 6.2 Opening a stream without announcement

This method may only be used if the interaction is started by the Source node.

The interaction begins with the Source node allocating a new Source Stream ID, and sending a Stream
Initiate Request to the Destination node. This message must carry a 6-byte Stream Content UID, which
specifies for the destination node the content and format of the data carried, and transitions the stream
to the Initiated state. From this state onwards the interaction continues as in described in Section 6.1.

If the Stream Content UID is unknown to the Destination node, it should use the Permanent Error,
Unimplemented error code in the rejection message.

 6.3 Data transfer

Once a stream transitioned to Open state, the Source node may start sending payload bytes using
Stream Data Send messages. The source node may send up to Max Buffer Size bytes using one or more
Stream Data Send messages, without needing to wait for acknowledgement from the destination node.

When the Destination node is ready to receive another Max Buffer Size bytes, it sends a Stream Data
Proceed message to the Source node. This signals to the Source node that it may send another Max
Buffer Size bytes. Each Stream Data Proceed message, irrespectively of when it was sent, extends the
window of allowed payload bytes to be sent by Max Buffer Size.

If the Source node has no more data to send, but wants to keep the stream open, it may, but is not
required to periodically send Stream Data Send messages with zero payload bytes to ensure that the
destination node and any gateways in the transfer path are still aware of the stream transmission.

 6.4 Closing the stream

The Source node signals completion of the transfer by sending a Stream Data Complete message to the
Destination node, providing the Source Stream ID and the Destination Stream ID with it. Optionally
the Source node may add a 4-byte value describing the total number of bytes sent in the stream. If the
Source node does not want to specify this value, it may omit the bytes from the Stream Data Complete
message or may send 0xFFFFFFFF to specify unknown length.

The Stream Data Complete message transitions the stream to Closed state.

The Stream is closed if the Destination node sends a Terminate Due To Error or Optional Interaction
Rejected message with no MTI value or with the MTI value of Stream Data Send; or if the Source node
sends a Terminate Due To Error or Optional Interaction Rejected message with no MTI value or with
the MTI value of Stream Data Proceed. When possible, the specific MTI value should be used.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 7 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 7 of 12 - Apr 30, 2021

95

100

105

110

115

120

125

20

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

 6.5 Special provisions for Gateways

A Gateway needs to be prepared for buffering up to Max Buffer Size bytes for each open stream. It
may reduce the Max Buffer Size in the Stream Initiate Request message if the buffer size available is
smaller than proposed. A Gateway must not modify the Max Buffer Size value of a Stream Initiate
Response message.

A Gateway may repackage the stream payload into fewer or more Stream Data Send messages than
received, as the underlying network requires. A Gateway must emit a Stream Data Send message with
empty payload after its buffer is drained, if it has received such a message.

A Gateway may delay forwarding Stream Data Proceed messages until its internal buffer is drained, but
it must not drop any of them.

A Gateway must delay forwarding the Stream Data Complete message until its internal buffer is
drained.

A Gateway must drop all data in its internal buffer and all delayed messages if the Stream is terminated
with an error message of Terminate Due To Error or Optional Interaction Rejected.

 7 Adaptation to CAN Transport (Normative)
This section describes the CAN implementation of stream transport message formats.

 7.1 Stream Data Send

Stream Data Send messages are sent on a CAN network using the Frame Type of 7 (Stream Data), the
Destination node alias and the Source node alias in the CAN header, and the Destination Stream ID in
the first data byte. The remaining data bytes can e filled with stream payload (up to 7 bytes per
message):

Name Dest
ID

Event
ID

Header Format Data-part Content

Stream Data Send Y N 0x1Fdd,dsss Byte 0: Destination Stream ID
Byte 1...: payload bytes

 7.2 All Other Messages

All other messages are sent as described in the OpenLCB Message Network Standard. Note that the
Stream Initiate Request message may need to be sent in two CAN frames if it contains a Stream
Content UID. The format for multiple frame CAN messages is described in the OpenLCB Message
Network Standard.

that support the Streaming protocol must keep track of the Stream states

Optionally, the destination can request that the source start a transfer. This uses some mechanism not
discussed here, e.g. Datagram messages.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 8 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 8 of 12 - Apr 30, 2021

130

135

140

145

150

155

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

The source sends an "Stream Initiate Request (Addressed)" to the destination. It carries a "Max Buffer
Size" value (2 bytes), a “Type Included” boolean flag (1 bit in a byte; see below for meaning) and a
"Source Stream ID" (1 byte) in the data section. The combination of source, destination, and Source
Stream ID must uniquely identify this stream transmission.

If the destination node does not wish to receive the stream, it returns a "Stream Initiate Reply
(Addressed)" marked “reject”, with a "Max Buffer Size" value (2 bytes) of zero, the “Type Included”
boolean flag (1 bit in a flag byte), "Source Stream ID" (1 byte) and "Destination Stream ID" (1 byte).
The message includes flags set to represent exactly one of several conditions:

“Permanent error” - This node does not process streams, will not accept a stream from this source, or
for some other reason will not ever be able to accept this stream. The Stream Initiate Request should
not be retransmitted. Optionally, the node can mark the reply with one or more of several conditions:

“Information Logged” - the node supports the logging protocol and information was logged for later
retrieval.

“Invalid Stream Request” - something made the stream request improper, such as longer than the max
permitted length. Proper requests might be acceptable.

“Source not permitted” - streams from this source will never be accepted

“Streams not accepted” - this node will not accept stream requests under any circumstance. A node can
also reject the interaction instead of sending Stream Initiate Reply with this code.

“Buffer shortage, resend” - The node isn't able to receive the stream because of a shortage of buffers.
The sending node should resend at its convenience.

“Stream rejected, out of order” - Should not happen, but an internal inconsistency was found in the
CAN frames making up a stream. Sender can try again if desired.

If the destination node wishes to receive the stream, it returns a "Stream Initiate Reply (Addressed)"
marked “accept”, with a "Max Buffer Size" value (2 bytes), the “Type Included” boolean flag (1 bit in
a byte), "Source Stream ID" (1 byte) and "Destination Stream ID" (1 byte). The "Max Buffer Size" is
less than or equal to the value in the Initiate Stream Request, and is the negotiated buffer size for this
transfer. If it's zero, the request to start the stream has been rejected, and the exchange is over. The
source can try again later.The Source Stream ID is the same as the value in the Initiate Stream Request,
and is returned for identification and the convenience of the source. The destination doesn't do anything
with it except return it. The source can use it to match up multiple operations, as a way of identifying
buffers, or for any other purpose.The Destination Stream ID is used to tag the data sent to the
destination. It has no meaning to the source. The destination can, but need not, use it to associate the
stream data with a particular buffer or usage. Multiple simultaneous streams can use the same
Destination Stream ID value.

The source starts sending bytes using Stream Data Send (Addressed) messages, each carrying up to the
message size limit on the particular wire protocol and the Source and Destination Stream ID. After
sending exactly Max Buffer Size bytes in one or more messages, the source pauses.

If the “Type Included” flag was true during initialization, the first 6 bytes of the data are a unique data-
type indicator. These are allocated the same way that Node IDs, etc, are allocated, but from a separate
name space. If that “Type Included” flag is false, some higher-level protocol must identify the data-

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 9 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 9 of 12 - Apr 30, 2021

160

165

170

175

180

185

190

195

25

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

type of the stream data. The idea is that a stream is a lot of data; there's not much use for one otherwise
because of the setup overhead (code and time). So six bytes for a stream type identifier isn't a large cost
(unlike e.g. a datagram, where it would be a 10% overhead). A UID as a Stream type ID has the
advantage that it's not ever going to collide, so people developing protocols don't have to coordinate it
(e.g. useful for future expansion, where a protocol can be locally developed and then deployed more
widely). And it still fits in the 1st CAN Frame of the stream, which simplifies what nodes have to do to
figure out what type of (unsolicited) data this is. On the other hand, streams have a stream ID, so that a
protocol can use some other mechanism (messages, datagrams, or even other streams) to pass the
information about what a specific new stream means. That means the type info at the start of the stream
isn't as necessary as in e.g. datagrams. (We really wanted to avoid situations like "The next datagram
you receive carries the data for this request", because "next" is a hard concept to ensure in code that's
doing several things independently)

On CAN, the Stream Data Send message does not carry the Destination Stream ID field. Messages to
CAN get split into frames and forwarded without the field. Messages from CAN have to have it
inserted by the gateway as part of the translation process. The gateway can do this as part of the
(optional) buffer accumulation from frames into larger transfers.

Upon receiving Max Buffer Size bytes via one or more messages, the destination sends a Stream Data
Proceed (Addressed) message to the source, carrying the Source Stream ID and Destination Stream ID.
This tells the source that there is enough buffer space available that another Max Buffer Size bytes can
be sent. The destination can also set flag bits (error codes) in this message to indicate that no more data
should be sent and the transmission should be terminated early.

The destination may, but is not required to, send a Stream Data Proceed (Addressed) message to the
source before receiving the full count of Max Buffer Size bytes. In that case, the source does not stop
transmission after sending Max Buffer Size bytes, but continues for an additional Max Buffer Size
bytes of transmission.

When the last data has been sent, the source sends a Stream Data Complete message carrying the
Source Stream ID and Destination Stream ID to indicate that all data has been sent. Optionally, this can
carry a four-byte length of the stream data transferred for checking. A zero value, if present, means the
length is unknown. When this message is received by the destination, the transfer is complete.

 8 Background Information
 8.1 Stream Content Type Identification

Stream senders can, but don't have to, identify the content type (format, meaning, etc) of the data
stream at the front. As part of their private protocol, they can use whatever structure they'd like for the
data.

General content types can be defined using unique identifiers. The “Type Included” flag identifies that
the first eight bytes of stream data are to be interpreted as stream content type information. These can
be allocated via the same mechanisms as EventIDs. Well-known ones will be published by OpenLCB.
These identifiers are recorded in a separate worksheet.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 10 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 10 of 12 - Apr 30, 2021

200

205

210

215

220

225

230

235

30

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

 8.2 Buffer Size

The buffer size can be up to 216-1 bytes = 64KB-1. This is driven by the size of the initiate messages,
which we want to keep in a single CAN frame. Although some transport mechanisms might be able to
profitably use larger buffers, it seems unlikely that a layout control bus will need to have a higher
message efficiency or lower latency than this size will allow. Should that turn out to be necessary in the
future, an alternate form for the stream initialization messages can be defined for those large-message
nodes. (It's unlikely they're running over CAN)

 8.3 CAN Discussion

On a CAN segment, the data limit is 8 bytes. This requires use of as little control information as
possible, so that as many of those eight bytes can be used for data as possible.

OpenLCB/S9.6 CAN frames can hold the source and destination aliases in the header. A dedicated
“stream data transfer” format can also be coded entirely in the header. This then allows 8 bytes of data
per transfer if the Source Stream ID and Destination Stream ID need not be carried. By specifying that
only one stream can be transferred on a CAN link between any two nodes at a time, no Stream ID
would be needed. Although initially consider, this it thought to be too inflexible. Instead, we chose a
format where the Source Stream ID is carried, reducing the payload to seven bytes per frame. This
requires that the Source Stream ID be unique among source-destination node pairs, without relying on
the Destination Stream ID to be part of the unique stream identification. Since a node knows that it's
originating the stream, this can be ensured in advance for point-to-point connections. Gateways will
need to track the Destination Stream ID to restore it to the full format. Since they are tracking the
stream in any case for buffering purposes, this is thought to be not a large problem.

 8.4 Implementation Notes

The "Stream Data Proceed" from the destination is clearance to send another buffer-size-worth of data.
To achieve better performance, the destination can send it before receiving the entire buffer-size-worth
of data, as soon as it has room to receive what's already been OK'd plus one more buffer size. For
example, a destination with a 4kB buffer could reply with Max Buffer Size of 2K, followed by an
immediate Stream Data Proceed, to do single overlap of the transfer.

Intermediate nodes need to be able to handle transfers, and therefore need permission to lower the Max
Buffer Size on the outbound Stream Initiate Request message. The length in the returned Stream
Initiate Reply can't be changed, as the destination need to know when to send clearance for another
buffer's worth of data.

A CAN ↔ Ethernet bridge might receive several kilobytes of data from the Ethernet side at a time. It's
then responsible for breaking that up into CAN frames and forwarding it. It can reduce the buffer size
of transfers if need be to ensure there's a place to store the data while this is done.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 11 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 11 of 12 - Apr 30, 2021

240

245

250

255

260

265

270

http://openlcb.org/Licensing.html

OpenLCB Stream Transport Standard

Table of Contents
 1 Introduction..1

 1.1 Served Use Cases...1
 1.2 Unserved Use Cases...1

 1.2.1 Environment of Proposal..1
 1.2.1.1 Requirements..1
 1.2.1.2 Preferences..1
 1.2.1.3 Design Points..2

 2 Specified Sections..2
 2.1 Introduction..2
 2.2 Intended Use...2
 2.3 Reference and Context...2
 2.4 Message Formats..2

 2.4.1 Stream Initiate Request...2
 2.4.2 Stream Initiate Reply..3
 2.4.3 Stream Data Send...4
 2.4.4 Stream Data Proceed...4
 2.4.5 Stream Data Complete..4

 2.5 States..4
 2.6 Interactions...4

 3 Background Information..6
 3.1 Stream Content Type Identification...6
 3.2 Buffer Size..6
 3.3 CAN Discussion...7
 3.4 Implementation Notes..7

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 12 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 12 of 12 - Apr 30, 2021

35

http://openlcb.org/Licensing.html

	1 Introduction (Informative)
	2 Intended Use (Informative)
	3 Definitions (Normative)
	4 Message Formats
	4.1 Stream Initiate Request
	4.2 Stream Initiate Reply
	4.3 Stream Data Send
	4.4 Stream Data Proceed
	4.6 Stream Data Control

	5 States (Normative)
	6 Interactions (Normative)
	6.1 Opening a stream with announcement
	6.2 Opening a stream without announcement
	6.3 Data transfer
	6.4 Closing the stream
	6.5 Special provisions for Gateways

	7 Adaptation to CAN Transport (Normative)
	7.1 Stream Data Send
	7.2 All Other Messages

	8 Background Information
	8.1 Stream Content Type Identification
	8.2 Buffer Size
	8.3 CAN Discussion
	8.4 Implementation Notes

