
OpenLCB Technical Note

Function Description
Information

Apr 30, 2021 Preliminary

 1 Introduction
"ConfigurationFunction description information" in this context refers to fixed information
available from an OpenLCB Train device, via OpenLCB, so that other devices can properly and
correctly configure it. The information is fixed, so that it can be pre-compressed, stored in the
device, and just supplied when needed with minimal work on the part of the device and the
device's developers. This means that e.g. the actual current configuration contents are not
available as part of the CDIFDI, as that is variable information. Similarly, the CDIFDI cannot
contain e.g. a serial number as that would require different CDIFDI contents in each node of a
single type.

Other information may be available via e.g. manuals or the Internet, and there may be pointers to
that information in the CDIFDI, but the format of that information is not under specification
here.

A key use for CDIFDI is to enable a Configuration Tool (CT) to know how to configure the
node. The configuration tool will use the CDIFDI information to render some form of suitable
Graphical User Interface to allow the user to easily and intuitively configure all aspects of the
node's capabilities. An important design choice was to embed the CDIFDI into each node so that
the system has all it needs to configure the node without having to source the information
externally to the OpenLCB network from the manufacturer or some other on-line repository via
the Internet or a CD/DVD etc. While the CT is likely to be a program running on a PC, it could
be a hand-held devicethrottle like mobile phone or PDA or even a custom-built device.

 2 Annotations to the Standard
 2.1 Introduction

Note that this section of the Standard is informative, not normative.

 2.2 Intended Use

Note that this section of the Standard is informative, not normative.

 2.3 Reference and Context

See Memory Configuration Protocol. That's one use for the CDIFDI, and one way to retrieve it,
but CDIFDI is independent of that.

CiA 306 “Electronic data sheet specification” describes the CANopen version of a similar
capability.

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 12 - Apr 30, 2021

Copyright 2011-. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 1 of 12 - Apr 30, 2021

5

10

15

20

25

30

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

 3 Stuff to be merged into the above

 3.1 Environment of Proposal

 3.1.1 Requirements
• Nodes must carry enough context that a stand-alone configuration tool can provide a useful

human interface without getting any data from an external source, e.g. needing an Internet
download to handle a new node type.

• It must be possible to configure a node entirely over the OpenLCB, without physical
interactions, e.g. pushing buttons.

 3.1.2 Preferences
• Small nodes shouldn't need a lot of processing power, e.g. to compress or decompress data in

real time. Memory usage should also be limited, but is a second priority.

• Configuration operations should be state-less and idempotent to simplify software at both ends.

• Multiple independent configuration operations can proceed at the same time. Specifically,
multiple devices should be able to retrieve correct configuration description information at the
same time.

Design Points
Basic configuration is done with the configuration protocol defined elsewhere.

The “Variables” described here are not exactly the same thing as “Configuration Variables” (CVs) or
“Node Variables” (NVs) that are discussed elsewhere. Those are aimed at storage, and so are grouped
by address. The “Variables” here are grouped by function. “Long address” might be several CVs, but
would be one variable to this proposal. Similarly, CV29 has lots of variables within it, each stored as
bits. Perhaps it would be better to use a different name here, such as “Setting” or “Option”?

 3.2 Proposal

 3.2.1 Definition

 must be able to represent them, but may not require any specific organization.CDI

4B) A Node can contain zero or more "Producers". Each Producer is independently configured. There
is no ordering between separate Producers, but they can be numbered for ease of reference.

4C) A Node can contain zero or more "Consumers". Each Consumer is independently configured.
There is no ordering between separate Consumers, or between individual Consumers and Producers,
but they can be numbered for ease of reference.

4D) Each Producer or Consumer can be configured with zero or one Events.

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 2 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 2 of 12 - Apr 30, 2021

35

40

45

50

55

60

65

70

http://openlcb.org/Licensing.html
../../documents/MemoryConfigurationProtocol.html

OpenLCB-CAN Configuration Desciption Information Technical Note

4E) Each Event has an Identifier which uniquely defines it. An event may optionally carry additional
data.

4F) To ensure future growth, there is no required "device", "channel" or other grouping within a node.
Those may be present in some node types, and for their needed configuration information. The
protocol for that will be defined elsewhere/elsewhen.CDI can and should reflect:

4A) The basic OpenLCB unit is a "Node". Nodes provide CDI
3) Secondary constraints are testability of the provided information, scalability of the format, and the
convenience and availability of a suitable toolchain.

4) There is a physical/logical structure to the configuration which the
-consuming device should also be considered. In particular, code complexity is an issue which must be
addressed.
CDI.

2A) Size and complexity in the providing device is the more important constraint. There are more of
those devices, they are cost sensitive, and they may not be upgradable once delivered.

2B) Size and complexity in the CDI, and complexity and size in the device consuming the CDI
2) The primary design constraints are complexity and size in the OpenLCB device providing Function
values are stored in the 0xF9 memory space. "Function Definition Information", similar in intent to
Configuration Definition Information (CDI) is stored in XML format in address space 0xFA to provide
user-oriented context. That includes:
Memory layout of the function values, allowing for multiple data types from binary (one and off for
lights) through integer values (for e.g. sound intensities) and strings (sign displays?).
Function naming, so that a throttle can display useful names to the user such as "Bell", "Coupler Clank"
and "Master Volume". This includes internationalization of those labels.
What else needs to be conveyed? "Make this prominent on the throttle"? "Have this there, just a little
less prominent"? "Seriously, nobody cares about this option, bury it"?
At present, there are no default values that e.g. associate "Bell" with a particular location or function.
These are thought to be too brittle, and there are just too many possibilities to be useful (see the
unscientific and incomplete Survey of existing function names).
Sample function definition XML:

 <?xml version='1.0' encoding='UTF-8'?>
 <?xml-stylesheet type='text/xsl' href='xslt/fdi.xsl'?>
 <fdi xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://openlcb.org/trunk/prototypes/xml/schema/fdi.xsd'>

 <segment origin='0' space='250'>
 <group>
 <name>Lighting Functions</name>
 <description>Headlights and Markerlights and Runninglights, oh my.</description>

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 3 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 3 of 12 - Apr 30, 2021

75

80

85

90

95

100

105

110

115

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

 <function offset="5" size ="1" kind="binary">
 <name>Headlights</name>
 <number>0</number>
 </function>
 <function size ="1" >
 <name>Ditch Lights</name>
 <number>4</number>
 </function>
 </group>
 <group>
 <name>Sound Functions</name>
 <description>Toot toot!.</description>
 <function size ="2" kind="analog">
 <name>Horn</name>
 <number>8</number>
 </function>
 </group>
 </segment>
 </fdi>

The structure is similar to CDI, with named sections that give the general location of the storage.
"number" is a hint that can be used to locate the function on a numbered GUI element (e.g. button);
"name" is the same if the GUI element can have a readable label.
"kind" is an enumerated type of (initially) "binary" and "analog". These are done as specific elements
in CDI, and perhaps that's a better approach.

A sample implementation of the DCC F0-F28 functions, as described on the Function Control page:

<?xml version='1.0' encoding='UTF-8'?>
<?xml-stylesheet type='text/xsl' href='xslt/fdi.xsl'?>
<fdi xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://openlcb.org/trunk/prototypes/xml/schema/fdi.xsd'>
<segment origin='0' space='250'>
 <group>
 <name>F0-F28</name>
 <description>Standard DCC functions</description>
 <function size="1" kind="binary">
 <name>Headlight</name>
 <number>0</number>
 </function>
 <function size="1">
 <number>1</number>
 </function>
 ...
 <function size="1">
 <number>28</number>

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 4 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 4 of 12 - Apr 30, 2021

120

125

130

135

140

145

150

155

160

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

 </function>
 </group>
</segment>
</fdi>

 3.2.2 Storage

THIS IS COPIED FROM THE CDI CURRENTLY, THIS NEEDS TO BE UPDATED TO BE
FDI SPECIFIC..........

The configuration definition is stored in a hierarchical manner.

I) In what follows:

A "String" must be present; an "Optional String" does not have to be. Strings are in UTF-8.

An "Integer" may be signed; if no sign, it's taken as positive.

A "Map" provides a set of named descriptive values. It contains:

Name: Optional String, if present required to be unique within enclosing group or node
Description: Optional String
1 or more "Key", "Value" pairs. Each element of the pair can be of any supported type,
depending only on how it is to be used.

Map elements provide a mapping between the pairs they contain. For example, a map can relate
numeric values for a variable to description strings. A map can also be used to provide free-form
documentation when neither the key nor the value are specified in advance. It may be useful in the
future to specify how maps can be defined at the group level to reduce duplication. Having the
possibility of a “Name” is meant to ease that future effort.

II) At the top, root level is the information for a "node". This includes:

Manufacturer: String
Descriptive Map: May contain “Model”, “Version”, “URL” and “Description” keys, along with any
others desired.

Model: If present, the human-readable model name the manufacturer gives to this node.
Version: If present, the human-readable version string for the current board.
Description: Optional String
URL: If present, a URL for more information. No specific content is expected at the URL; If desired,
that can be dealt with in a different specification.

Any other information desired can be added via additional keys.

III) Within the node is zero or more "groups". Each group contains:

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 5 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 5 of 12 - Apr 30, 2021

165

170

175

180

185

190

195

200

205

210

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

Name: String, required to be unique within enclosing group or node
Descriptive Map: Map of documentation information; the “Description” key is the basic item.
Replication count: Integer >= 1 (number of times this group is replicated within the parent item)

A group with a replication count > 1 (called a replicated group) can be used to represent a type of
replicated device. For example, a node with 4 identical input devices and 6 identical output devices can
be compactly described by two groups, with replication counts of 4 and 6 respectively.

Individual groups within replicated groups are numbered from 1 to the replication count. If more than
one replicated group is present, the numbering for each starts again with 1.

Groups may contain one or more inner groups, with the same representation. This may continue to any
desired level.

IV) Groups may contain "variable", "producer" and/or "consumer" descriptions.

IV-a) A "variable" description contains:

Name: String, required to be unique within enclosing group or node
Type: Exactly one of "boolean", "digit" (an unsigned binary-coded-decimal value), "signed" (a binary
value with a sign), "unsigned" (a binary value without a sign), "string" (a UTF-8 string, not-null
terminated), or "blob" (arbitrary byte vector).
Max: Integer - For string and blob variables, the maximum number of bytes that can be stored. For
digit, signed and unsigned types, the maximum value allowed.
Min: Integer - For digit, signed and unsigned values, the minimum value allowed.
Description: Optional String
Default: value of this Type, required
Offset: Optional integer offset with in the configuration address space for this item; if not present, data
is laid out by length in depth-first order.

A variable may contain zero or one map descriptions. If present, the map represents a mapping between
possible values (the "Key" part of the map's pairs) and convenient names for them (the "Value" part of
the map's pairs).

Note that the current value of a variable is not considered configuration definition information (see
item 1A and 1B in the introduction).

Configuration information must not be packed into variables; each variable must represent one type of
information. In particular, the use of individual bits within larger values to pack multiple pieces of
information is forbidden; those must be represented as individual variables. (How the information is
stored internally is up to the designer of the specific device, and is not restricted; this requirement is
about access to the information, not about how it's laid out in physical memory)

IV-b) A "producer" description contains:

Name: String, required to be unique within enclosing group or node

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 6 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 6 of 12 - Apr 30, 2021

215

220

225

230

235

240

245

250

255

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

Description: Optional String
Replication count: Integer >= 1 (number of times this producer definition is replicated within the parent
item)
Offset: Optional integer offset with in the configuration address space for this item; if not present, data
is laid out by length in depth-first order.

A producer description may contain zero or more variable descriptions for any variables that configure
details of the producer's function.

IV-c) A "consumer" description contains:

Name: String, required to be unique within enclosing group or node
Description: Optional String
Replication count: Integer >= 1 (number of times this consumer definition is replicated within the
parent item)
Offset: Optional integer offset with in the configuration address space for this item; if not present, data
is laid out by length in depth-first order.

A consumer description may contain zero or more variable descriptions for any variables that configure
details of the consumer function. This may include e.g. variables that define how any content in
incoming messages will be used.
 3.2.3 Serialization
The logical layout in the previous section has to be converted to some serial set of bytes for transfer
and storage.

The primary format is straight-forward XML. (Link to schema)

Another is compressed binary information. Either an aggressive compression algorithm, or some
context-aware compression, can be used. Size and ease of expansion are the key criteria; ease of
compression is much less important. XSLT can do some of the reformatting between compact and
readable form

We need to pick one format for a lingua franca.

 3.3 Example

The following is not meant to show how configuration definition information would be stored, but what
kinds of information would be stored. It's a description of a complex accessory decoder, the Digitrax
DS54, modified for use in a Producer-Consumer model.

Hopefully the syntax will be self-explanatory. In any case, it's just for this example, not a proposal of
any kind.

Manufacturer (String): Digitrax
Model (String): DS54
Version (String): 2.33
Description (Optional String): For more information, see http://digitrax.com/asdf/123

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 7 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 7 of 12 - Apr 30, 2021

260

265

270

275

280

285

290

295

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

Group start:
Name (String): Decoder
Description (Optional String): These variables describe the entire board
Replication count (integer): 1

Variable:
Name: Address
Type: Integer
Max: 2044
Min: 0
Description: This is the board address, in DCC space originally

Group start: (Note this is nested in "Decoder")
Name (String): Channel
Description (Optional String): Each Channel is one pair of output wires and contains two
inputs
Replication count (integer): 4

Group start: (Note this is nested in "Channel")
Name (String): Input
Description (Optional String): Each Channel has two inputs, called "Switch"
and "Aux"
Replication count (integer): 2

Producer start:
Name: Switch Input Active
Description: Driven by the 1st input wire for this channel. The variables control
....

Variable:
Name: Input Type
Type: Integer
Max: 10
Min: 0
Default: 0
Description: Specify the type of signal expected on this input
Map:
Name: Values
"0", "positive edge"
"1", "negative edge"
"2", "either edge"
...
Map End
Variable End
Variable:

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 8 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 8 of 12 - Apr 30, 2021

300

305

310

315

320

325

330

335

340

345

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

Name: Input Task
Type: Integer
Max: 8
Min: 0
Default: 0
Description: Specify the local action when this input is active

Map:
Name: Values
"0", "Output toggle"
"1", "No output change"
"2", "Output thrown"
...
Map End

Variable End
Producer end:
Producer start:
Name: Aux Input Active
Description: Driven by the 2nd input wire for this channel. The variables
control

Variable:
Name: Input Type
Type: Integer
Max: 10
Min: 0
Default: 0
Description: Specify the type of signal expected on this input
Map:
Name: Values
"0", "positive edge"
"1", "neither edge"
"2", "either edge"
...
Map End
Variable End
Variable:
Name: Input Task
Type: Integer
Max: 8
Min: 0
Default: 0
Description: Specify the local action when this input is active

Map:
Name: Values

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 9 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 9 of 12 - Apr 30, 2021

350

355

360

365

370

375

380

385

390

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

"0", "Output toggle"
"1", "No output change"
"2", "Output thrown"
...
Map End

Variable End
Producer end:

Group end: (This is the end of the input group)

Variable:
Name: Output Type
Type: Integer
Max: 40
Min: 0
Default: 0
Description: Determines what the output leads do in response to events

Consumer start:
Name: Turnout Active Thrown
Description: Set the thrown output lead active and closed lead inactive.
Consumer end:

Consumer start:
Name: Turnout Active Closed
Description: Set the closed output lead active and thrown lead inactive.
Consumer end:

Consumer start:
Name: Turnout Active Both
Description: Sets both output leads active.
Consumer end:

Consumer start:
Name: Turnout Inactive
Description: Sets both output leads inactive.
Consumer end:

Group end: (This is end of the "Channel" group)

Group end: (This is end of the "Decoder" group)

Some thoughts based on putting this example together:

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 10 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 10 of 12 - Apr 30, 2021

395

400

405

410

415

420

425

430

435

http://openlcb.org/Licensing.html

OpenLCB-CAN Configuration Desciption Information Technical Note

1) In a real DS54, there are subtle differences between the Switch and Aux configuration choices on the
various channels. I blurred those here by documenting them identically via replication. For a real
device, they could either be separately specified or (more likely) the differences wouldn't matter in a
P/C-based device.

2) A DS54 can receive messages that put its output into four states: One side on, the other side on, both
sides on, and neither side on. These four interacts with the "Output Type" setting in weird and
wonderful ways. This was represented as four consumers. This seems a much more logical way to
configure the device, as it gives more flexibility to the rest of the layout that's originating the requests.

3) The DS54 inputs also generate messages. They are specified as two producers (for the active and
inactive messages).
 3.4 Implementation Notes

This section is non-normative notes and suggestions for implementors.

Some references for XML compression:

http://www.ibm.com/developerworks/xml/library/x-datacompression/index.html?
cmp=dw&cpb=dwxml&ct=dwnew&cr=dwnen&ccy=zz&csr=072111

http://www.cs.panam.edu/~artem/main/teaching/csci6370spring2011/papers/XML%20compression
%20techniques%20A%20survey%20and%20comparison.pdf

On the other hand, a look-back compression algorithm has the advantage that it's cheap to decompress
and might do almost as well:

http://excamera.com/sphinx/article-compression.html

XML strings can start with a UTF BOM (either 0xEF, 0xFF or 0xFE in the 1st byte, since there's no
need to support UTF-32BE or UTF-32LE), or the UTF-8 text for “<?xml” which starts with 0x3C. (But
concern about support for too many character sets!)

A first byte of 0x80 is defined as the “Compressed” indicator(s), followed by a byte that indicates the
compression type. (We don't want to have too many kinds, as receivers need to implement all of them
to be able to use the CDIFDI!) 0x80 00 is the code for our choice of default, see
http://excamera.com/sphinx/article-compression.html

 4 Remaining items
Internationalization of the XML content?

Talk about the encoding string in the <?xml first line, and UTF-8 coding as default; ASCII as subset.

Mini-XML effort; we're using as simple a subset as possible.

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 11 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 11 of 12 - Apr 30, 2021

440

445

450

455

460

465

470

http://openlcb.org/Licensing.html
http://excamera.com/sphinx/article-compression.html
http://excamera.com/sphinx/article-compression.html
http://www.cs.panam.edu/~artem/main/teaching/csci6370spring2011/papers/XML%20compression%20techniques%20A%20survey%20and%20comparison.pdf
http://www.cs.panam.edu/~artem/main/teaching/csci6370spring2011/papers/XML%20compression%20techniques%20A%20survey%20and%20comparison.pdf
http://www.ibm.com/developerworks/xml/library/x-datacompression/index.html?cmp=dw&cpb=dwxml&ct=dwnew&cr=dwnen&ccy=zz&csr=072111
http://www.ibm.com/developerworks/xml/library/x-datacompression/index.html?cmp=dw&cpb=dwxml&ct=dwnew&cr=dwnen&ccy=zz&csr=072111

OpenLCB-CAN Configuration Desciption Information Technical Note

Table of Contents
 1 Introduction..1
 2 Annotations to the Standard...1

 2.1 Introduction..1
 2.2 Intended Use...1
 2.3 Reference and Context...1

 3 Stuff to be merged into the above..2
 3.1 Environment of Proposal..2

 3.1.1 Requirements..2
 3.1.2 Preferences..2
Design Points..2

 3.2 Proposal..2
 3.2.1 Definition..2
 3.2.2 Storage..3
 3.2.3 Serialization..5

 3.3 Example..6
 3.4 Implementation Notes..9

Copyright 2012. All rights reserved. See http://openlcb.org/Licensing.html for license terms.Page 12 of 12 - Apr 30, 2021Copyright 2011-. All rights
reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). See
https://openlcb.org/licensing for more information. Page 12 of 12 - Apr 30, 2021

http://openlcb.org/Licensing.html

	1 Introduction
	2 Annotations to the Standard
	2.1 Introduction
	2.2 Intended Use
	2.3 Reference and Context

	3 Stuff to be merged into the above
	3.1 Environment of Proposal
	3.1.1 Requirements
	3.1.2 Preferences
	Design Points

	3.2 Proposal
	3.2.1 Definition
	3.2.2 Storage
	3.2.3 Serialization

	3.3 Example
	3.4 Implementation Notes

	4 Remaining items

