10

15

20

25

OpenLCB Technical Note

?pen ﬁ?_ Event Identifiers

Mar 30, 2023 Draft

1 Introduction

This technical note contains informative discussion and background for the corresponding
“OpenLCB Event Identifiers Standard”. This explanation is not normative in any way.

2 Annotations to the Standard

This section provides background information on corresponding sections of the Standard
document. It's expected that two documents will be read together.

2.1 Introduction

Although event identifiers generally take the format of a Unique Node Identifier plus a 16-bit
extension, there are some exceptions to this noted in the Event Identifiers Standard which will be
detailed in this document.

2.2 Intended Use

An Event Identifier is intended to be globally unique and for a specific purpose defined either by
user configuration or enforced by the Event Identifiers Standard. Any node may be configured
to produce or consume any event, regardless of its assigned Node ID. However, logically, a
unique Event Identifier is defined to have a unique purpose, whether assigned by user
configuration or explicitly defined in the Event Identifier Standard.

The "globally unique" requirement only refers to the universe of connected nodes; nodes that
never need to communicate with each other don't need to have separate Event Identifiers. In
general, however, nodes can move: they can be sold or loaned for use on another layout, nodes
on modular layouts can be connected to other arbitrary modules, and few assumptions can be
made. Therefore, we require global uniqueness for all Event Identifiers.

To ensure uniqueness, the top six bytes of an Event Identifier that the manufacturer or user
defines are required to be within a Node ID space that the manufacturer or user controls. The
low two bytes can be any number, so long as each value is used for only one event.

This requirement applies equally to events defined by a hardware node, like a push button, a
software node in a computer, or Event Identifiers that are defined by a human writing them on a
piece of paper. In each case, the thing doing the definition must ensure it has control over the
Node ID corresponding to the top six bytes, so it can ensure that the Event Identifier not be
reused.

Bytel Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

Unique 16 bit
extension

Node ID assigned to you

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 1 of 10 - Mar 30, 2023

30

35

40

45

50

55

60

OpenLCB Event Identifiers Technical Note

The Node ID part can be from real nodes which a user owns.

A software configuration tool might define events and assign Event Identifiers to them. A board
manufacturer may prefer a pushbutton configuration process. A modular club may decide that certain
events form the “boundaries” of modules, and need to be assigned Well-Known Event Identifiers to
make it easier to create large modular layouts. Whatever the method, the Event Identifiers need to be
globally unique, which is ensured by requiring Event Identifiers to be created using Node ID numbers
assigned to them (and therefore not assigned to anybody else), plus an additional 16 bits that they are
responsible for using only once. This is worth repeating, each Event Identifier can only be used once
for a specific state or meaning. It doesn't mean that multiple nodes cannot use it, but rather it should
not be used for a different purpose or meaning. This is because the meaning and its use is shared
across all of the nodes using it, and unless it can be guaranteed that they all have been changed there
will be conflict between them. It is much safer to use a new Event Identifier, and nodes will usually
have a mechanism to supply new, “virgin” Event Identifiers.

Note that the Node ID part of an Event Identifier does not have to correspond to any physical node. So
long as it is assigned out of a Node ID address space that the assigning body owns, and, by extension,
has control of over, it can be used. For example, a fast-clock manufacturer might want to define a
range of Event Identifiers so that a different event is emitted every fast minute. For the sake of
argument, let's say 24 bits worth of specific events are needed (it's actually smaller, but let's use this as
an example). The manufacturer has a large range of Node IDs assigned already, so can use 8-bits
worth of that space, plus the extra 16 bits in the Event Identifiers below the Node ID portion, to do this.
If a manufacturer had a range of Node IDs that included at least 12.34.56.78.9A.00 through
12.34.56.78.9A FF (in other words, all possible values of the low byte), they could create a set of Event
Identifiers with the low 24 bits used to carry a time value:

Table 2: Example of defining a Set of Events

Bytel Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 ByteS8

Unique 16 bit
extension

0x12 0x34 0x56 0x78 0x9A Time Value

Assigned Node ID

This is guaranteed to be unique, no matter where one of these devices is used, because the node ID
range is guaranteed to belong to the manufacturer, and they will use it only once for this purpose.

2.3 References and Context
This Standard is in the context of the following OpenLCB Standards:

* The CAN Physical Layer Standard, which specifies the physical layer for transporting
OpenLCB-CAN frames.

* The Message Network Standard, which defines the basic messages and how they interact.
Higher-level protocols are based on this message network, but are defined elsewhere.

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 2 of 10 - Mar 30, 2023

65

70

75

80

85

90

95

OpenLCB Event Identifiers Technical Note

* The Event Transport Standard, which defines the protocol for transporting events.

* The Unique Identifiers Standard which defines the format and allocation of unique 48-bit
identifiers.

2.4 Format

Event Identifiers are intended to be globally unique 64-bit values.

2.5 Allocation

2.5.1 Node ID Based

The majority of Event Identifiers fall into this category. The six most significant bytes are derived
from a globally unique six byte Node ID followed by the two least significant bytes which are typically
chosen through user configuration.

2.5.1.1

2.5.2 Well-Known Automatically-Routed

Unlike Node ID Based Event Identifiers, the Well-Known Automatically Routed Event Identifiers are
explicitly defined by the Event Identifiers Standard for a specific purpose. Additionally, gateways are
required to route these events to all segments.

Note a change that it is not specified whether or not the Well-Known Automatically Routed events
participate in producer/consumer identify. The primary purpose of the producer/consumer identify is to
pair consumers with produces, especially for the purpose of routing between OpenLCB segments.
Since these Well-Known Automatically-Routed events must always be routed, it could be argued that
the identify events for these Well-Known Event Identifiers are redundant, but are retained for
symmetry.

Though not explicitly required, it would be prudent for a manufacture to identify in a product's
documentation as to which Well-Known Automatically Routed events it produces and consumes, and
what are the resulting actions it takes when these events occur.

2.5.2.1 Emergency Off

The Emergency Off Event Identifier (01.00.00.00.00.00.FF.FF) is a request for a node to de-energize
all of its outputs. A node receiving this event may continue to remain a powered participant of the
OpenLCB bus, but may de-energize any outputs unrelated to maintaining OpenLCB communications.
The meaning of de-energize is not prescribed for any given node, it is up to the node manufacturer
and/or user to prescribe what, if anything, should happen in the node if it receives this event. For
example:

* Ifthe node is a DCC Power Station, it might disable its amplified DCC output.
» Ifthe node is an accessory controlling turnout motors, it might remove power from the motors

A node may revert to its previous energized state following the reception of a Clear Emergency Off
event (01.00.00.00.00.00.FF.FE).

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 3 of 10 - Mar 30, 2023

100

105

110

115

120

125

130

135

OpenLCB Event Identifiers Technical Note

A node that has recently joined the OpenLCB network is not expected to know about or react in any
specifically prescribed way to the current Emergency Off status defined prior to the node joining the
network until the next Emergency Off or Clear Emergency Off event is produced.

2.5.2.2 Emergency Stop

The Emergency Stop Event Identifier (01.00.00.00.00.00.FF.FD) is a request for a node to command
all of its outputs to a safe state. A node receiving this event is not required to de-energize any of its
outputs. The meaning of “safe state” is not prescribed for any given node, it is up to the node
manufacturer and/or user to prescribe what, if anything, should happen in the node if it receives this
event. For example:

* Ifthe node is acting on behalf of one or more DCC trains, it might send the global emergency
stop command onto the DCC signal bus.

» Ifthe node is an accessory controlling turnout motors, it might do nothing, route its outputs to a
manufacture default state, route its outputs to a user defined state, or something else altogether.

A node may revert to its previous non-Emergency Stop state following the reception of a Clear
Emergency Stop event (01.00.00.00.00.00.FF.FC). A node that has recently joined the OpenLCB
network is not expected to know about or react in any specifically prescribed way to the current
Emergency Stop status defined prior to the node joining the network until the next Emergency Stop or
Clear Emergency Stop event is produced.

2.5.2.3 Power Supply Brownout Detected

The Power Supply Brownout Detected (node) Event Identifier (01.00.00.00.00.00.FF.F1) may
optionally be sent by a node in the case where the node detects a low voltage condition that it considers
abnormal, or out of its normal operating range. This event is agnostic to any other OpenLCB standard,
and is a generic indication that it does not have enough voltage to function properly, regardless as to
where that voltage originates. The node is not required to know the exact voltage at which the condition
was detected in order to send this event.

The Power Supply Brownout Detected (standard) Event Identifier (01.00.00.00.00.00.FF.F0) may
optionally be sent by a node in the case where the node detects a low voltage condition that crosses the
threshold required by any relevant OpenLCB Standard. It is implied that the node producing this event
is subject to, and subsequently detecting a violation of, one or more OpenLCB Standards. The CAN
Physical Layer Standard requirement of nodes operating down to CAN bus voltages of 7.5V is one
example.

The exact time at which these events are sent is not specified and left up to the node’s designer. A
number of possible options might be considered, which are not necessarily mutually exclusive. For
example:

* The event may be sent immediately. Because the node is in a brownout state, it is reasonable
not to assume that the event actually gets sent successfully and observed by other nodes in the
network.

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 4 of 10 - Mar 30, 2023

140

145

150

155

160

165

170

OpenLCB Event Identifiers Technical Note

* The condition which would have resulted in the event may be logged such that it can be sent at
a later time when the voltage has recovered to a point where successful transmission and
observation by other nodes in the network is likely.

* The condition which would have resulted in the event may be logged such that it can be sent on
the next node initialization when the voltage has recovered to a point where successful
transmission and observation by other nodes in the network is likely.

It is not specified how other nodes in the network are to act upon these two events or that these two
events are distinguished in any way when interpreted and presented to a user. The intent is that these
two events, when observed, are useful for diagnosing network problems.

It is not specified how any given node will produce or inhibit production of these events when reacting
to otherwise normal inrush conditions which may temporarily result in a low voltage condition which
the node is designed to tolerate and recover from. The trade-off between false positive and false
negative detection of brownout conditions is left up to an individual node’s designer(s).

2.5.2.4 Other Well-Known Automatically Routed

Other Well-Known Automatically Routed Event Identifiers not discussed here have their uses
prescribed and/or discussed elsewhere. No assumptions should be made about the use of these Well-
Known Automatically Routed Event Identifiers as prescribed by this document.

2.5.3 Well-Known

Unlike Node ID Based Event Identifiers, the Well-Known Event Identifiers are explicitly defined by
the Event Identifiers Standard for a specific purpose. Gateways are not required to actively route these
events to all segments, and may maintain a static or learned routing table for these events to prevent
unnecessary propagation.

Though not explicitly required, it would be prudent for a manufacture to identify in a product's
documentation as to which Well-Known events it produces and consumes and what are the resulting
actions it takes when these events occur.

2.5.3.1 Duplicate Node ID

The Duplicate Node ID Detected event would typically be sent by a node that receives a packet from
another node containing its own unique Node ID. The production of this event by a node is not
explicitly required.

2.5.3.2 MERG CBUS

OpenLCB allocates a Node ID address space specifically for mapping MERG CBUS events into
OpenLCB. CBUS events come in two types: long and short. A long event is uniquely identified by
the CBUS Node ID and Event ID. A CBUS short event is translated into an OpenLCB event by using
0x0000 as the Node ID in the “CBUS Node ID” field of the OpenLCB event identifier. This is allowed
because in the CBUS standard, node-id 0x0000 is not permitted.

CBUS events can also come in the form of a request. These requests should be translated into an
Identify Producer on OpenL.CB in order to solicit the response that the CBUS request is asking for.

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 5 of 10 - Mar 30, 2023

175

180

185

190

195

200

OpenLCB Event Identifiers Technical Note

Two Identify Producer messages will have to be sent, one for the ON state range and another for an
OFF state range, the response of which will need to be translated back for CBUS.

2.5.3.3 Basic DCC Accessory Decoder

The Well-Known Event ID space for basic DCC accessory decoders is provided as a suggestion to
manufactures on how to translate OpenLCB events to classic DCC accessories. It is possible that there
could be future mapping schemes required to implement a use case not covered by this scheme. This
scheme is not designed to be mutually exclusive of other possible schemes, and its use is not required
when mapping between OpenLCB events and classic DCC accessories.

The format of the DCC packet for a basic DCC Accessory Decoder is as follows (most significant bit
first):

Byte 1 Byte 2 Byte 3 (Error Byte)

Obl0Oaaaaaa Ob1AAACDDD ObEEEEEEEE

Bits 5 down to 0 are the middle 6 | Bits 6 down to 4 are the 3 most
bits of the address. significant bits of the address in
I's complement form. Bits 2
down to 0 are the 3 least
significant bits of the address.
Bit 3 is set for active, clear for
inactive.

The Accessory Decoder address format in most significant bit first format is: 0bAAAaaaaaaDDD, and
it is expected that this is how the bits map to Bytes 7 and 8 of the Event Identifier. Though the AAA
address bits are in 1's complement form under the DCC standards, they are in standard non 1's
complement form in OpenLCB format.

By convention, most DCC Accessory Decoders couple two outputs together to form an output pair, and
use the least significant address bit to select the direction of travel for the output pair as a whole. In
this mode, the active/inactive bit 'C' is always sent as set or ignored altogether by the DCC decoder.
The effective address space is cut in half (max of 2048 addresses); one set of four addresses are used
for broadcast space; and another set of four addresses are thrown away by convention due to indexing
starting at one. This is where the available 1-2040 accessory decoder addresses that most DCC users
are familiar with comes from.

There is some ambiguity in how the 1-2040 addresses that most DCC users are familiar with translate
to the bit level addresses between existing DCC systems in the market place. There are generally two
schemes that are deployed, as follows in bold/underline with a repeating pattern throughout the address
space. It is not prescribed how the OpenLCB user interfaces map to the bit level events. Grey cells
mark addresses that do not exist in the opposing scheme.

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 6 of 10 - Mar 30, 2023

OpenLCB Event Identifiers Technical Note

User DCC Vendor A Binary Address DCC Vendor B Binary Address
Facing

Address DCC Format OpenLCB Format DCC Format OpenLCB Format
Reference | ObAAAaaaaaaDDD |0ObAAAaaaaaaDDD ObAAAaaaaaaDDD |ObAARaaaaaaDDD
1 (normal) | 0b111000001001 |0b000000001001 0pb111000001001 |0b000000001001
1 (reverse) | 00111000001000 |0b000000001000 |0b111000001000 |0b000000001000
252 0x11111111111x |0b00011111111x Ob11111111111x |0b00011111111x
253 0b11000000000x |0b00L0O0O0O0O0O000x
256 0b11000000011x |0b00100000O011x
257 0b11000000100x |0b00100000100x 0pb11000000100x |0b00100000100x
508 0x11011111111x |0b00111111111x 0b11011111111x |0b00111111111x
509 0b11000000000x |0b00100000000x 0b10100000000x |0b010O00000000x
512 0b11000000011x |0b00100000011x 0b10100000011x |0b010O00000O011x
513 0b10100000100x |0b01000000100x 0b10100000100x |0b01000000100x
1788 0x00111111111x |0b11011111111x Ob00111111111x |0b11011111111x
1789 0b00100000000x |0b11000000000x

1792 0b00100000011x |0b11000000011x

1793 0p00000000100x |0b11100000100x 0b00000000100x |0b11100000100x
2039 0b00011111000x |0b11111111000x 0b00011111000x |0b11111111000x
2040 0b00011111011x |0b11111111011x 0b00011111011x |0b11111111011x
Broadcast |0b000111111xxx |0b111111111xxx |0b000111111xxx |0b111111111xxx

| 2.5.3.4 AdvancedExtended DCC Accessory Decoder

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International

License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information.

Page 7 of 10 - Mar 30, 2023

OpenLCB Event Identifiers Technical Note

....... A Aecee
»

prevatent:The format of the DCC packet fo
significant bit first):

r an extended DCC Accessory Decoder is as follows (most

‘ Byte 1 Byte 2 Byte 3 Byte 4 (Error Byte)
‘ 0b10A;AASALASA, 0bOA 1,6AsAL0A Aol ObXXXXXXXX ObEEEEEEEE

Bits 5 down to O are the |Bits 6 down to 4 are the |8-bit command.
middle 6 bits of the 3 most significant bits
address. of the address in 1's
complement form. Bits
2 down to 1 are the 2

least significant bits of
the address.

210 | The Extended Accessory Decoder address format in most significant bit first format is:

Event Identifier. Though the A 0AsAg address bits are in 1's complement form under the DCC
standards, they are in standard non 1's complement form in Openl.CB format.

The reason that the 11-bit extended DCC accessory address falls into Bytes .6 and 7. inconsistent with
215 | the use of Bytes 7 and 8 in the basic. DCC accessory address. is so that a single producer/consumer

identified range message can be used without violating the 50% space utilization rule.
\ Example Event to DCC packet mappings:

User OpenL.CB Event ID DCC Packet

Address
L 01.01.02.00.01.00.04.XX |0b10000001 0b01110001 0bXXXXXXXX ObEEEEEEEE
|2 01.01.02.00.01.00.05.XX *|0b10000001 0b01110011 0bXXXXXXXX ObEEEEEEEE
|13 01.01.02.00.01.00.06. XX |0b10000001 0b01110101 O0bXXXXXXXX ObEEEEEEEE

01.01.02.00.01.00.07.XX |0b10000001 0b01110111 ObXXXXXXXX ObEEEEEEEE

[

‘ 2043 01.01.02.00.01.07Z.FE. XX |0b10111111 0b00000101 0bXXXXXXXX ObEEEEEEEE

‘ E-Stop |01.01.02.00.01.07.FF.00 Ob10111111 0b00000111 0b00000000 ObEEEEEEEE

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 8 of 10 - Mar 30, 2023

OpenLCB Event Identifiers Technical Note

2.5.3.5 Other Well-Known

220 Other Well-Known Event Identifiers not discussed here have their uses prescribed and/or discussed
elsewhere. No assumptions should be made about the use of these Well-Known Event Identifiers as
prescribed by this document.

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 9 of 10 - Mar 30, 2023

OpenLCB Event Identifiers Technical Note

Table of Contents

I INEEOAUCTION. ...ttt ettt et e et e et e et e e aeessbeeseesnseeaeesaseeseesnseesneesnneeesnns 1
2 Annotations to the Standard.............cceeeeiiiiiiiiiee e e e ae s 1
B B 12 (4 Lo 0 o OO USSP 1
B 11753 0 (ST O RSP PRRUUSSRN 1
2.3 References and COMEEXT........ccuueruieiiierieeiieiieeteerite et esteeteesteasbeessaeenseesseeenseesseesnseessseenseesnseeesns 2

B B S0) a1 T | A UPUPPPRR 3
BN 1 (0 To7: 1103 s FO O S U P PSRRI 3
2.5.1 NOAE ID BASEA.....cccouiiiiiieeciie ettt ee et e e s tte e et eessasaessaeeessaeesssaeesssaeensseeensseennnes 3
2.5.2 Well-Known Automatically-Routed.............cccirriiiiiiiiiiiieiieeceeeecee e 3
2.5.2.1 EMETZEnCY Off ..ottt et e et e e e e e e e esaeesnseeesnnsaaaeees 3

2.5.2.2 EMETZEINCY STOP..uutieiurieeiiieeieiieeirieeiteeetteeeitteessteesseeessseesasseeensseesnsseesnssasssseessenssssneeens 4

2.5.2.3 Power Supply Brownout Detected..........cocviiriiiiiiiiiiiiieiiieeieeeeee e 4

2.5.2.4 Other Well-Known Automatically Routed..........cccceeeiiiiiiniiieniiniiiieieeee e, 5

2.5.3 WEII-KINOWI. ...ttt ettt ettt ettt et e st et e et e e tteesbeessaeanbeeenssaeeensseeesnnseeeennses 5
2.5.3.1 Duplicate NOAE ID.........ociiiieiiiiieiie ettt eeee et ee e e eee e e e e s beeesareeeeeesnnsaeeaeeene 5

2.5.3.2 MERG CBUS ...ttt sttt ateente st te e st e saeenseeseesseenseeneenseensenn 5

2.5.3.3 Basic DCC AcceSSOTY DECOART.........ccveeeiiiieiieeeiieeetieeeieeeeieeesiteeesveeeseareeeeeeenrreeeeeas 6

2.5.3.4 Advanced DCC AccesSOry DECORT...........coviiiiiiiieiie et e 7

2.5.3.5 Other Well-KNOWN.....ccoiiiiiiiiiieiieitieitecte ettt ettt et e eveeseeeesbeeseaesbaessaessseessnennes 8

Copyright 2011-2023. All rights reserved. This OpenLCB document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). See https://openlcb.org/licensing for more information. Page 10 of 10 - Mar 30, 2023

	1 Introduction
	2 Annotations to the Standard
	2.1 Introduction
	2.2 Intended Use
	2.3 References and Context
	2.4 Format
	2.5 Allocation
	2.5.1 Node ID Based
	2.5.2 Well-Known Automatically-Routed
	2.5.2.1 Emergency Off
	2.5.2.2 Emergency Stop
	2.5.2.3 Power Supply Brownout Detected
	2.5.2.4 Other Well-Known Automatically Routed

	2.5.3 Well-Known
	2.5.3.1 Duplicate Node ID
	2.5.3.2 MERG CBUS
	2.5.3.3 Basic DCC Accessory Decoder
	2.5.3.4 AdvancedExtended DCC Accessory Decoder
	2.5.3.5 Other Well-Known

