# https://plot.ly/python/subplots/
import plotly as py
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs
# Когда выгоднее использовать быструю, а когда - медленную в зависимости от длины входных данных
# Корелляция - все то же самое
py.offline.init_notebook_mode(connected=True)
# import matplotlib
# import matplotlib.pyplot as plt
# import matplotlib.gridspec as gridspec
import numpy as np
from sklearn.metrics import mean_squared_error
colors = ['k','b','r','m','g','Brown','DarkBlue','Tomato','Violet', 'Tan','Salmon','Pink',
'SaddleBrown', 'SpringGreen', 'RosyBrown','Silver',]
def print_mse(got, predicted, prefix=''):
mse = mean_squared_error(got, predicted)
if isinstance(mse, np.complex):
print('%s Mean Squared Error: (%.2g, %.2g)' % (prefix, mse.real, mse.imag))
else:
print('%s Mean Squared Error: %.2g' % (prefix, mse))
def convolve(s1, s2):
nOut = len(s1) + len(s2) - 1
s1_padded = np.pad(s1, (0, nOut - len(s1)), 'constant', constant_values=(0,0))
s2_padded = np.pad(s2, (0, nOut - len(s2)), 'constant', constant_values=(0,0))
# res = []
# for n in range(nOut):
# v = 0;
# for m in range(nOut):
# v += s1_padded[m] * s2_padded[n - m]
# res.append(v)
# return res# return res
return [sum(s1_padded[m] * s2_padded[n - m] for m in range(nOut)) for n in range(nOut)]
def fconvolve(s1, s2):
nOut = len(s1) + len(s2) - 1
s1_padded = np.pad(s1, (0, nOut - len(s1)), 'constant', constant_values=(0,0))
s2_padded = np.pad(s2, (0, nOut - len(s2)), 'constant', constant_values=(0,0))
fft1 = np.fft.fft(s1_padded)
fft2 = np.fft.fft(s2_padded)
return np.fft.ifft(fft1 * fft2)
N = 500
T = 1.0 # s
f1 = 20 # Hz
f2 = 20 # Hz
w1 = 2 * np.pi * f1
w2 = 2 * np.pi * f2
t = np.linspace(0, T, N)
s1 = np.sin(w1 * t / T)
s2 = np.sin(w2 * t / T)
conv = convolve(s1, s2)
fconv = fconvolve(s1, s2)
npconv = np.convolve(s1, s2)
print_mse(conv, fconv, 'conv/fconv')
print_mse(conv, npconv, 'conv/npconv')
print_mse(fconv, npconv, 'fconv/npconv')
tr_conv = go.Scatter(
x = t,
y = conv,
name='conv'
)
tr_fconv = go.Scatter(
x = t,
y = fconv.real,
name='fconv'
)
tr_npconv = go.Scatter(
x = t,
y = npconv.real,
name='numpy'
)
fig = py.tools.make_subplots(rows = 1, cols = 1)
fig['layout'].update(height=450, width=900)
fig.append_trace(tr_conv, 1, 1)
fig.append_trace(tr_fconv, 1, 1)
fig.append_trace(tr_npconv, 1, 1)
py.offline.iplot(fig)
conv/fconv Mean Squared Error: (2.1e-26, -5e-26) conv/npconv Mean Squared Error: 3.5e-27 fconv/npconv Mean Squared Error: (1.7e-26, -4.9e-26) This is the format of your plot grid: [ (1,1) x1,y1 ]
N = 500
T = 1.0 # s
f1 = 20 # Hz
f2 = 21 # Hz
w1 = 2 * np.pi * f1
w2 = 2 * np.pi * f2
t = np.linspace(0, T, N)
s1 = np.sin(w1 * t / T)
s2 = np.sin(w2 * t / T)
conv = convolve(s1, s2)
fconv = fconvolve(s1, s2)
npconv = np.convolve(s1, s2)
print_mse(conv, fconv, 'conv/fconv')
print_mse(conv, npconv, 'conv/npconv')
print_mse(fconv, npconv, 'fconv/npconv')
tr_conv = go.Scatter(
x = t,
y = conv,
name='conv'
)
tr_fconv = go.Scatter(
x = t,
y = fconv.real,
name='fconv'
)
tr_npconv = go.Scatter(
x = t,
y = npconv.real,
name='numpy'
)
fig = py.tools.make_subplots(rows = 1, cols = 1)
fig['layout'].update(height=450, width=900)
fig.append_trace(tr_conv, 1, 1)
fig.append_trace(tr_fconv, 1, 1)
fig.append_trace(tr_npconv, 1, 1)
py.offline.iplot(fig)
conv/fconv Mean Squared Error: (3.5e-27, -1.6e-26) conv/npconv Mean Squared Error: 9.6e-28 fconv/npconv Mean Squared Error: (2.6e-27, -1.7e-26) This is the format of your plot grid: [ (1,1) x1,y1 ]
N = 500
T = 1.0 # s
f1 = 20 # Hz
f2 = 22 # Hz
w1 = 2 * np.pi * f1
w2 = 2 * np.pi * f2
t = np.linspace(0, T, N)
s1 = np.sin(w1 * t / T)
s2 = np.sin(w2 * t / T)
conv = convolve(s1, s2)
fconv = fconvolve(s1, s2)
npconv = np.convolve(s1, s2)
print_mse(conv, fconv, 'conv/fconv')
print_mse(conv, npconv, 'conv/npconv')
print_mse(fconv, npconv, 'fconv/npconv')
tr_conv = go.Scatter(
x = t,
y = conv,
name='conv'
)
tr_fconv = go.Scatter(
x = t,
y = fconv.real,
name='fconv'
)
tr_npconv = go.Scatter(
x = t,
y = npconv.real,
name='numpy'
)
fig = py.tools.make_subplots(rows = 1, cols = 1)
fig['layout'].update(height=450, width=900)
fig.append_trace(tr_conv, 1, 1)
fig.append_trace(tr_fconv, 1, 1)
fig.append_trace(tr_npconv, 1, 1)
py.offline.iplot(fig)
conv/fconv Mean Squared Error: (2.5e-27, -1.1e-27) conv/npconv Mean Squared Error: 2.2e-28 fconv/npconv Mean Squared Error: (2.4e-27, -1.2e-27) This is the format of your plot grid: [ (1,1) x1,y1 ]
N = 500
T = 1.0 # s
f1 = 20 # Hz
f2 = 23 # Hz
w1 = 2 * np.pi * f1
w2 = 2 * np.pi * f2
t = np.linspace(0, T, N)
s1 = np.sin(w1 * t / T)
s2 = np.sin(w2 * t / T)
conv = convolve(s1, s2)
fconv = fconvolve(s1, s2)
npconv = np.convolve(s1, s2)
print_mse(conv, fconv, 'conv/fconv')
print_mse(conv, npconv, 'conv/npconv')
print_mse(fconv, npconv, 'fconv/npconv')
tr_conv = go.Scatter(
x = t,
y = conv,
name='conv'
)
tr_fconv = go.Scatter(
x = t,
y = fconv.real,
name='fconv'
)
tr_npconv = go.Scatter(
x = t,
y = npconv.real,
name='numpy'
)
fig = py.tools.make_subplots(rows = 1, cols = 1)
fig['layout'].update(height=450, width=900)
fig.append_trace(tr_conv, 1, 1)
fig.append_trace(tr_fconv, 1, 1)
fig.append_trace(tr_npconv, 1, 1)
py.offline.iplot(fig)
conv/fconv Mean Squared Error: (7.5e-29, -1.1e-27) conv/npconv Mean Squared Error: 9.4e-29 fconv/npconv Mean Squared Error: (5.6e-29, -1.1e-27) This is the format of your plot grid: [ (1,1) x1,y1 ]
N = 500
T = 1.0 # s
f1 = 20 # Hz
f2 = 25 # Hz
w1 = 2 * np.pi * f1
w2 = 2 * np.pi * f2
t = np.linspace(0, T, N)
s1 = np.sin(w1 * t / T)
s2 = np.sin(w2 * t / T)
conv = convolve(s1, s2)
fconv = fconvolve(s1, s2)
npconv = np.convolve(s1, s2)
print_mse(conv, fconv, 'conv/fconv')
print_mse(conv, npconv, 'conv/npconv')
print_mse(fconv, npconv, 'fconv/npconv')
tr_conv = go.Scatter(
x = t,
y = conv,
name='conv'
)
tr_fconv = go.Scatter(
x = t,
y = fconv.real,
name='fconv'
)
tr_npconv = go.Scatter(
x = t,
y = npconv.real,
name='numpy'
)
fig = py.tools.make_subplots(rows = 1, cols = 1)
fig['layout'].update(height=450, width=900)
fig.append_trace(tr_conv, 1, 1)
fig.append_trace(tr_fconv, 1, 1)
fig.append_trace(tr_npconv, 1, 1)
py.offline.iplot(fig)
conv/fconv Mean Squared Error: (1.8e-28, -1.1e-28) conv/npconv Mean Squared Error: 3.2e-29 fconv/npconv Mean Squared Error: (1.6e-28, -1.1e-28) This is the format of your plot grid: [ (1,1) x1,y1 ]
N = 500
T = 1.0 # s
f1 = 20 # Hz
w1 = 2 * np.pi * f1
t = np.linspace(0, T, N)
t_ext = np.linspace(0, 2 * T - T / N, 2 * N - 1)
s1 = np.sin(w1 * t / T)
s2 = [0 if i < 200 or i > 300 else 1 for i in range(N)]
conv = convolve(s1, s2)
fconv = fconvolve(s1, s2)
npconv = np.convolve(s1, s2)
print_mse(conv, fconv, 'conv/fconv')
print_mse(conv, npconv, 'conv/npconv')
print_mse(fconv, npconv, 'fconv/npconv')
tr_conv = go.Scatter(
x = t_ext,
y = conv,
name='conv'
)
tr_fconv = go.Scatter(
x = t_ext,
y = fconv.real,
name='fconv'
)
tr_npconv = go.Scatter(
x = t_ext,
y = npconv.real,
name='numpy'
)
fig = py.tools.make_subplots(rows = 1, cols = 1)
fig['layout'].update(height=450, width=900)
fig.append_trace(tr_conv, 1, 1)
fig.append_trace(tr_fconv, 1, 1)
fig.append_trace(tr_npconv, 1, 1)
py.offline.iplot(fig)
conv/fconv Mean Squared Error: (7.3e-29, 4.1e-29) conv/npconv Mean Squared Error: 1.8e-30 fconv/npconv Mean Squared Error: (6.7e-29, 3.9e-29) This is the format of your plot grid: [ (1,1) x1,y1 ]
N = 500
T = 1.0 # s
t = np.linspace(0, T, N)
t_ext = np.linspace(0, 2 * T - T / N, 2 * N - 1)
s1 = [0 if i < 200 or i > 300 else 1 for i in range(N)]
s2 = [0 if i < 200 or i > 300 else 1 for i in range(N)]
conv = convolve(s1, s2)
fconv = fconvolve(s1, s2)
npconv = np.convolve(s1, s2)
print_mse(conv, fconv, 'conv/fconv')
print_mse(conv, npconv, 'conv/npconv')
print_mse(fconv, npconv, 'fconv/npconv')
tr_signal1 = go.Scatter(
x = t,
y = s1,
name='s1'
)
tr_signal2 = go.Scatter(
x = t,
y = s2,
name='s2'
)
tr_conv = go.Scatter(
x = t_ext,
y = conv,
name='conv'
)
tr_fconv = go.Scatter(
x = t_ext,
y = fconv.real,
name='fconv'
)
tr_npconv = go.Scatter(
x = t_ext,
y = npconv.real,
name='numpy'
)
fig = py.tools.make_subplots(rows = 2, cols = 1)
fig['layout'].update(height=900, width=900)
fig.append_trace(tr_signal1, 1, 1)
fig.append_trace(tr_signal2, 1, 1)
fig.append_trace(tr_conv, 2, 1)
fig.append_trace(tr_fconv, 2, 1)
fig.append_trace(tr_npconv, 2, 1)
py.offline.iplot(fig)
conv/fconv Mean Squared Error: (-1.3e-27, -6.8e-27) conv/npconv Mean Squared Error: 0 fconv/npconv Mean Squared Error: (-1.3e-27, -6.8e-27) This is the format of your plot grid: [ (1,1) x1,y1 ] [ (2,1) x2,y2 ]
for N in [50, 100, 500, 1000, 2000]:
T = N / 50 # s
f = 20 # Hz
w = 2 * np.pi * f
t = np.linspace(0, T, N)
s1 = np.sin(w * t / T)
s2 = [0 if i < 200 or i > 300 else t[i] for i in range(N)]
print('N = {}'.format(N))
%timeit convolve(s1, s2)
%timeit fconvolve(s1, s2)
%timeit np.convolve(s1, s2)
print('')
N = 50 5.15 ms ± 536 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 154 µs ± 13.9 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 9.31 µs ± 499 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) N = 100 17.2 ms ± 64.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 314 µs ± 17.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 15.4 µs ± 137 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) N = 500 334 ms ± 4.56 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 317 µs ± 3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 100 µs ± 2.71 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) N = 1000 1.5 s ± 149 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 17.8 ms ± 1.59 ms per loop (mean ± std. dev. of 7 runs, 100 loops each) 272 µs ± 3.69 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) N = 2000 5.94 s ± 500 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 1.36 ms ± 171 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 860 µs ± 6.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)