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Abstract

Probability weights are used in many areas of research including complex survey
designs, missing data analysis, and adjustment for confounding factors. They are use-
ful analytic tools but can lead to statistical inefficiencies when they contain outlying
values. This issue is frequently tackled by replacing large weights with smaller ones or
by normalizing them through smoothing functions. While these approaches are prac-
tical, they are also prone to yield biased inferences. This paper introduces a method
for obtaining optimal weights, defined as those with smallest Euclidean distance from
target weights among all sets of weights that satisfy a constraint on the variance of
the resulting weighted estimator. The optimal weights yield minimum-bias estima-
tors among all estimators with specified precision. The method is based on solving

∗The authors gratefully acknowledge the support provided by the KID grant from Karolinska Institutet,
Sweden. The authors also acknowledge very helpful comments from the anonymous Reviewer and the
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a constrained nonlinear optimization problem whose Lagrange multipliers and objec-
tive function can help assess the trade-off between bias and precision of the resulting
weighted estimator. The finite-sample performance of the optimally weighted esti-
mator is assessed in a simulation study, and its applicability is illustrated through an
analysis of heterogeneity over age of the effect of the timing of treatment-initiation
on long-term treatment efficacy in patient infected by human immunodeficiency virus
in Sweden.

Keywords: probability weights, weighted estimators, sampling weights, nonlinear con-
strained optimization, mathematical programming
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1 Introduction

Probability weights have long been used in a variety of applications in many areas of re-

search, from medical and social sciences to physics and engineering. For example, they are

used when dealing with missing data, balancing distribution of confounders between pop-

ulations being compared, or correcting for selection probability in complex survey designs.

The increasing popularity of probability weights over several decades originates from their

conceptual simplicity, modeling flexibility, and sound theoretical basis.

Our work was motivated by the abundant use of probability weights in studies on the

effect of timing of initiation and switching of treatment for the human immunodeficiency

virus (HIV-CAUSAL Collaboration et al., 2011; When To Start Consortium et al., 2009;

Kitahata et al., 2009; Petersen et al., 2008). For example, the Writing Committee for the

CASCADE Collaboration (2011) evaluated the relative benefits of early treatment initiation

over deferral in patients with CD4-cell count less than 800 cells/µL. They analyzed time

to death or first acquired-immunodeficiency-syndrome diagnosis with weighted survival

curves and Cox regressions. The weights were obtained as the inverse of the probability of

treatment initiation given a set of baseline covariates.

Probability weights are non-negative scalar values associated with each experimental

unit that can be used by appropriate statistical methods. They may be known or estimated

from observed data. When their distribution presents with long tails, the resulting inference

may be highly imprecise (Rao, 1966; Kang and Schafer, 2007; Basu, 2011).

Methods have been proposed to alleviate the sometimes excessive imprecision of weighted

inference, and the body of work on this topic is vast. In medical sciences the most frequent

approach is weight trimming, or truncation, which consists of replacing outlying weights

with less extreme ones. For example, values in the the top and bottom deciles may be

3



replaced with the 90th and 10th centiles, respectively. Trimming reduces the variability of

the weights and the standard error of the corresponding weighted estimator. Potter (1990)

discussed techniques to choose the best trimming cutoff value, by assuming that the weights

follow an inverted and scaled beta distribution. Cox and McGrath (1981) suggested finding

the cutoff value that minimizes the mean squared error of the trimmed estimator evaluated

empirically at different trimming level. Kokic and Bell (1994) provided an optimal cutoff

for stratified finite-population estimator that minimized the total mean squared error of

the trimmed estimator. Others suggested similar methods to obtain optimal cutoff points

(among others Rivest et al. (1995); Hulliger (1995)).

Approaches other than trimming have also been considered. Pfeffermann and Sverchkov

(1999) suggested modifying the weights by using a function of the covariates that mini-

mized a prediction criteria. They later extended this approach to generalized linear models

(Pfeffermann and Sverchkov, 2003). In the context of design-based inference, Beaumont

(2008) proposed modeling the weights to obtain a set of smoothed weights that can lead

to an improvement in statistical efficiency of weighted estimators. Fuller (2009) (Section

6.3.2) discussed a class of modified weights in which efficiency can be maximized. Kim and

Skinner (2013) merged the ideas earlier proposed by Beaumont (2008) and Fuller (2009)

and considered modified weights that were a function of both covariates and outcome vari-

able of interest. Elliot and Little (2000) and Elliott (2008) provided a weight-pooling model

averaging the estimates obtained from all different trimming points within the Bayesian

framework. Elliott (2009) extended these results to generalized linear regression models.

Beaumont et al. (2013) used the conditional biased to down-weigh the most influential units

to obtain robust estimators. Other approaches, primarily based on likelihood, have been

proposed. These provide efficient inference under informative sampling (Chambers, 2003;

Pfeffermann, 2009, 2011; Scott and Wild, 2011, among others).
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While weight trimming and smoothing reduce the variability in the weights and infer-

ential imprecision, they can also introduce substantial bias. This paper describes a new

method to obtain optimal weights, while controlling the precision of weighted estimators.

The method is based on solving a constrained nonlinear optimization problem to find an

optimal set of weights that minimizes a distance from target weights, while satisfying a

constraint on the precision of the resulting weighted estimator. A similar approach was

recently proposed by Zubizarreta (2015), who suggested obtaining stable weights by solv-

ing a constrained optimization problem to minimize the variance of the weights under the

constraint that the mean value of the covariates remains within a given tolerance.

The following Section describes the constrained optimization problem that defines op-

timal weights and presents some of their properties. Section 3 discusses the choice of the

variance constraint. Section 4 shows the results of a simulation study that contrasts op-

timal weights and trimmed weights with respect to mean squared error of the weighted

marginal mean of a continuous variable and the parameters of a weighted regression. Sec-

tion 5 illustrates the use of optimal weights to evaluate heterogeneity in the effect of timing

of treatment initiation on long-term CD4-cell count. The data were extracted from a com-

prehensive register of patients infected by the human immunodeficiency virus in Sweden

(Sönnerborg, 2016). Section 6 contains conclusions and some suggestions for the use of

optimal weights in applied research.

2 Optimal probability weights

Let θ̂w∗ be an unbiased estimator for a population parameter θ∗ that uses weights w∗ =

(w∗
1, . . . , w

∗
n)

T , with 1Tw∗ = 1 and w∗ ≥ 0. Throughout, the symbol 1 indicates an n-

dimensional vector of ones. For example, θ̂w∗ = yTw∗ is the weighted mean of a sample of
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n observations y = (y1, . . . , yn)
T . Let σw∗ indicate the standard error of θ̂w∗ and σ̂w∗ an

estimator for it.

When w∗ contains outliers, the standard error σw∗ may be large and inference on θ∗

inefficient. Instead of trimming the weights, we suggest deriving the weights ŵ that are

closest to w∗ with respect to the Euclidean norm ‖w − w∗‖, under the constraint that

the estimated standard error σ̂ŵ be less than or equal to a specified constant ξ > 0. The

corresponding nonlinear constrained optimization problem can be written as follows,

minimize
w∈Rn

‖w − w∗‖ (1)

subject to σ̂w ≤ ξ (2)

w ≤ ǫ (3)

w ≥ 0 (4)

When a solution ŵ to problem (1)-(4) exists, constraint (2) guarantees that the esti-

mated standard error of the estimator with weights ŵ is less than or equal to ξ. Con-

straints (3) and (4) guarantee that the optimal weights ŵ are bounded and non-negative,

respectively. The constant ǫ, with 0 < ǫ ≤ 1, can be set close to 1 to improve the goodness

of the asymptotic approximation of the the variance estimator σ̂w, as further discussed in

the following Sections.

Throughout this paper we refer to ŵ as the set of optimal weights and to w∗ as the set

of target weights. The following are some notable features of the optimal weights.

(i) Consistency. If the estimator of the standard error of the weighted estimator con-

verges in probability to zero as the sample size tends to infinity for any set of weight

w, then the probability that θ̂ŵ = θ̂w∗ converges to one,

lim
n→∞

P (σ̂w ≤ ξ) = 1 ⇒ lim
n→∞

P (θ̂ŵ = θ̂w∗) = 1 (5)
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for any constant value ξ > 0. Property (5) holds because the target weights w∗ are

assumed to satisfy constraints (3) and (4). If they also satisfy constraint (2), then w∗

is the optimum and θ̂ŵ = θ̂w∗ .

(ii) Minimum-bias estimator. If the optimal weights are equal to the target weights, then

the corresponding weighted estimators are equal to each other and unbiased for the

target parameter θ∗,

ŵ = w∗ ⇒ θ̂ŵ = θ̂w∗ ⇒ E(θ̂ŵ) = E(θ̂w∗) = θ∗

When the optimal weights are different from the target weights, then the optimally

weighted estimator may or may not be biased. For example, suppose θ̂w∗ = yTw∗ is

an unbiased estimator for θ∗. The bias of the optimally weighted estimator θ̂ŵ = yT ŵ

with respect to the target parameter θ∗ is

E
[
yT ŵ − θ∗

]
= E

[
yT ŵ − yTw∗

]
+ E

[
yTw∗

]
− θ∗

︸ ︷︷ ︸

=0

= E
[
yT (ŵ − w∗)

]

If the vectors y and (ŵ − w∗) are orthogonal, then the optimally weighted estimator

θ̂ŵ is unbiased for θ∗. Also, minimizing ‖ŵ−w∗‖ is equivalent to minimizing the bias

of the optimal estimator with respect to the target parameter.

More generally, suppose the target estimator θ̂w∗ is the solution to a weighted equation

for a given set of weights w∗

n∑

i=1

w∗
i hi(θ̂w∗) = 0

where hi is a known function of the parameter θ and sample data. A Taylor series

expansion of hi(θ̂ŵ) around the parameter value θ̂w∗ shows that the optimally weighted

estimator is the solution to
n∑

i=1

ŵi

[

hi(θ̂w∗) + h′
i(θ̂w∗)(θ̂ŵ − θ̂w∗) +O((θ̂ŵ − θ̂w∗)2)

]

= 0
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The remainder, O, converges to zero at a quadratic rate as (θ̂ŵ − θ̂w∗) tends to zero.

From the above equation, given that E(θ̂w∗) = θ∗ and ignoring the Taylor series

remainder, the bias of the optimally weighted estimator with respect to the target

parameter is approximately equal to

E(θ̂ŵ − θ∗) = E(θ̂ŵ − θ̂w∗) + E(θ̂w∗)− θ∗ ≈ −E

[

(ŵ − w∗)Th(θ̂w∗)

ŵT∇wh(θ̂w∗)

]

where h(θ̂w∗) denotes the stacked vector (h1(θ̂w∗), . . . , hn(θ̂w∗))T and ∇wh(θ̂w∗) its

gradient. Similarly to the weighted mean estimator, if the vectors h(θ̂w∗) and (ŵ−w∗)

are orthogonal, then the optimally weighted estimator θ̂ŵ is approximately unbiased

for θ∗, bar the Taylor series remainder. Also, given property (5), minimizing ‖ŵ−w∗‖
is equivalent to minimizing the bias of the optimal estimator with respect to the target

parameter. The optimal weights ŵ therefore yield the minimum-bias estimator among

all weighted estimators with standard error less or equal to ξ.

(iii) Convex optimization problem. The objective function in (1) is convex, and constraints

(3) and (4) are linear. In general, if the constraint in (2) is also convex, then the

optimization problem (1)-(4) admits one unique solution. Computational algorithms

to solve nonlinear constrained optimization problems exist. In our simulation and

data analysis we used the primal-dual interior point algorithm implemented in the

R package “Ipoptr” (Wächter and Biegler, 2005), which can solve general large-scale

nonlinear constrained optimization problems. The “MA57” sparse symmetric system

(HSL, 2016) was used as a line-search method within “Ipoptr”.

(iv) Multiple constraints. The optimization problem (1)-(4) can be extended to include

multiple equality and inequality constraints. For example, when the weighted esti-

mator of interest is a vector, each element of the estimated variance matrix can be
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constrained separately. This is further discussed in the simulation study in and the

real-data application presented in Sections 4 and 5, respectively.

3 The precision constraint

The optimal probability weights ŵ, solution to the optimization problem (1)-(4), depend

on the value ξ specified by constraint (2). The value ξ directly sets the standard error, σ̂ŵ,

and the precision, 1/σ̂ŵ, of the estimate θ̂ŵ. Smaller values of ξ induce greater precision

and larger values of the objective function (1). The latter generally imply larger bias of the

estimator θ̂ŵ with respect to the target parameter θw∗ . As shown in Section 4, substantial

gains in precision can often be traded at slight bias.

An example may help to interpret the trade-off between precision and bias. Imagine

that the target weights aim to balance the distributions of covariates between two treat-

ment groups in an observational study, thus mimicking the conditions of a randomized

experiment. The target weights contain outliers, and the resulting estimate of the treat-

ment effect is excessively imprecise. Suppose a specified level ξ for the standard error of

the treatment effect is considered acceptable. The optimally-weighted estimate θ̂ŵ would

have the specified precision, but it would be biased for θw∗ .

In practice, what precision level may be considered acceptable is for the analyst to

determine. Sometimes, the desired precision of the estimate of interest is known or can be

bounded within a reasonably small range. When it cannot be determined to any degree of

accuracy, it is recommendable that different values be explored within reason.

Evaluating the magnitude of the Lagrange multipliers may be useful when contrasting

precision and bias. Suppose that the vector of target weights w∗ satisfies constraints (3)

and (4). If w∗ also satisfies constraint (2), then w∗ is the unique optimum and the objective
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function (1) at the optimum is zero. If w∗ does not satisfy constraint (2), then ŵ 6= w∗,

σ̂ŵ = ξ, and ∇wf(ŵ) = −λ∇wg(ŵ), where ∇wf and ∇wg are the gradients of the objective

function (1) and constraint (2), respectively, and the scalar constant λ is the Lagrange

multiplier. A small multiplier at the optimal solution ŵ indicates that a decrease in ξ

would cause a small increase in objective function (1) and in the bias with respect to the

target parameter θw∗ . Conversely, a large multiplier indicates that a decrease in ξ would

cause a large increase in the objective function and bias. This point is further discussed in

the real-data application in Section 5.

Determining an acceptable precision is similar to determining the detectable difference

in sample size and power calculations. As in sample size and power calculations, the desired

precision level may be defined before a study is initiated, and relative precision levels, such

as effect sizes, may be more easily determined than absolute levels.

The trade-off between bias and precision is not peculiar of the optimal-weight method

proposed in Section 2 above. For example, selecting the cutoff value in the traditional

trimming approach also amounts to deciding precision and bias of the resulting weighted

estimator, albeit less efficiently then the optimal-weights estimator.

4 Simulations

We examined the performance of the proposed optimal weights in different simulated sce-

narios. A first set of scenarios considered weighted means (Section 4.1), and a second set

weighted least-squares estimators (Section 4.2). In all simulated samples, we compared the

proposed optimal weights with trimmed weights with respect to bias, variance, and mean

squared error of the weighted estimator (2).
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4.1 Weighted mean

This Section describes setup and results of the simulation for the weighted mean estimator.

4.1.1 Simulation’s setup

In each scenario we pseudo-randomly generated 1,000 samples each of which comprised 500

observations from a normally-distributed variable under the following model

yi ∼ N(20 + 8xi, 4) (6)

where i = 1, . . . , 500, and xi ∼ beta(xi | α0, β0), a beta distribution with parameters α0

and β0. The target weights were defined as

w∗
i =

beta(xi | α1, β1)

beta(xi | α0, β0)
(7)

The weights defined in equation (7) can be interpreted as sampling weights (Quatember,

2015). The density beta(xi | α0, β0) can be seen as the distribution of the variable x in the

sampled population, while beta(xi | α1, β1) the distribution in the population that represent

the inferential target.

To evaluate the performance of the proposed optimal weights, we considered fifty differ-

ent scenarios, constructed by combining the following parameter values: α1 = {1, 2, 3, 4, 5},
β1 = {1, 2, 3, 4, 5}, and (α0, β0) = {(2, 5), (5, 5)}. When (α0, β0) = (α1, β1), the weights w∗

i

were all equal to one. The farther away the two sets of parameters were from each other,

the more extreme the weights became and the less efficient the resulting weighted inference

was.

In each simulated sample we considered two estimators for the weighted mean: the

optimal estimator θ̂ŵ = yT ŵ and the trimmed estimator θ̂w = yTw. The cutoff value for
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calculating the trimmed weights, w, was computed by using the method proposed by Cox

and McGrath (1981) and Potter (1990). We considered a set of truncation thresholds on a

grid of values. For each truncation threshold, we estimated the mean squared error as if the

true value of the target parameter was known, not estimated from the data. This cannot

be done in real-data settings, but it allowed us to compare our proposed approach with

truncation at its best-possible performance. The estimation was performed by generating

100 Monte Carlo samples. In practical applications the true target parameter is unknown,

and the optimal truncation threshold needs to be estimated. Recently, Borgoni et al. (2012)

suggested estimating it efficiently through the bootstrap.

The optimal weights ŵ were obtained by solving the optimization problem (1)-(4). The

constant ξ was set equal to the estimated standard error of the weighted sample mean using

the trimmed weights. In each simulated sample we computed the estimated standard error

of the weighted mean as described in Cochran (1977). The value of ǫ was set to be equal

to the 0.999-quantile of the distribution of w∗.

In a secondary analysis, we evaluated the performance of the proposed weights at dif-

ferent values of ξ in (2). We considered the following two scenarios

w∗
i =

beta(xi | α1 = 3, β1 = 3)

beta(xi | α0 = 2, β0 = 5)
, w∗

i =
beta(xi | α1 = 4, β1 = 2)

beta(xi | α0 = 5, β0 = 5)
. (8)

The target population was skewed in the first scenario and symmetric in the second.

We set ξ equal to values on a grid from 50% to 100% of the variance observed when using

the target weights w∗
i defined in (8). We set ǫ equal to values from the 0.99-quantile of the

distribution of w∗ when ξ was equal to 50% of the observed weighted variance, and to the

maximum of w∗ when ξ was equal to 100% of the observed weighted variance.
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4.1.2 Simulation’s results

The left-top panel in Figure 1 shows the scenarios where the target population is skewed

with α0 = 2 and β0 = 5. The curve indicates the ratio between the observed mean squared

error of the weighted mean estimator with trimmed weights and that with optimal weights

with respect to the target paramter θ∗,

MSE ratio =

∑1000
i=1 (θ̂

(i)
w − θ∗)2

∑1000
i=1 (θ̂

(i)
ŵ − θ∗)2

(9)

where θ̂
(i)
w and θ̂

(i)
ŵ denote the two estimated parameters in the i-th simulated dataset. The

curve was smoothed with a B-spline with 4 degrees of freedom. The bottom-left panel is

identical to the top-left one, except the target population is symmetric with α0 = 5 and

β0 = 5.

The optimally weighted estimator θ̂ŵ performed better in all simulated scenarios. The

larger gain in mean squared error was observed when the target weights w∗ were larger.

For example, with target weights w∗
i = beta(xi | α1 = 3, β1 = 3)/beta(xi | α0 = 2, β0 = 5),

indicated by the dot in top-left panel, the mean squared error of the trimmed estimator

was about 1.4 times as large as that one of the optimal estimator. A ratio greater than 1.5

was observed when the target weights were w∗
i = beta(xi | α1 = 4, β1 = 2)/beta(xi | α0 =

5, β0 = 5), as indicated by the dot in bottom-left panel. As expected, when the target

weights were small, the difference between trimmed and optimal estimators was small, too.

The lines in the right-hand-side panels in Figure 1 depict mean squared error (solid

line), variance (dotted), and bias (dashed) for different percentages of the variance of the

weighted estimator observed when using w∗
i as defined in (8). The lines show that high

precision could be obtained with relatively low bias.
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Figure 1: Left-hand-side panels: mean squared error ratio between trimmed and optimally

weighted estimators. Right-hand-side panels: mean squared error (solid line), variance

(dotted), and bias (dashed) of the optimally weighted estimator θ̂ŵ, for different proportions

of the variance of the weighted estimator observed when using w∗
i defined in (8).
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4.2 Weighted least-square estimator

This Section describes setup and results of the simulation for the weighted least-squares

estimator.

4.2.1 Simulation’s setup

We pseudo-randomly generated 1,000 samples each of which comprised 500 observations

on three variables (yi, ti, ci) with the following model

yi = −10 + θti + γci + εi (10)

with εi ∼ N(0, 1), ci ∼ N(10, 1), and ti ∼ Ber(πi), with πi = exp(ci−10)/(1+exp(ci−10)).

We considered 25 different values for the parameter γ from 0.1 to 5. The parameter θ was

the inferential objective and was set at θ = 2 in all scenarios.

We defined the target weights as w∗ = 1/π̂i, where π̂i was an estimator for πi obtained

from a logistic regression model with ci as the only covariate with the “ipw” package in R

(van der Wal and Geskus, 2011). We applied the target weights to the following weighted

regression model

yi,w∗ = β1,w∗ + β2,w∗ti + εi,w∗ (11)

The setup described above reflects a common applied research settings where ti represents

a treatment, ci a confounder, and yi a response variable of interest. When estimating the

treatment effect from observational data, inverse probability weights aim at balancing the

distribution of covariates across treatment groups, thus mimicking a randomized experi-

ment. The parameter γ in equation (10) determines the strength of the confounding effect

of ci.

In each scenario we estimated the optimally weighted estimator β̂2,ŵ and the trimmed

estimator β̂2,w. The cutoff value for calculating the trimmed weights, w, was computed
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as described in Section 4.1.1. The optimal weights were obtained by solving the following

optimization problem

minimize
w∈Rk

‖w − w∗‖ (12)

subject to σ̂1,w ≤ ξ1 (13)

σ̂2,w ≤ ξ2 (14)

w ≤ ǫ (15)

w ≥ 0 (16)

The above optimization problem has one constraint for each of the regression coefficients

β1,w and β2,w in model (11). The level of precision ξ2 for the coefficient β2,w was set equal

to the estimated standard error of β̂2,w, while the level of precision ξ1 for the coefficient

β1,w was set to a large number and the constraint (13) was inactive in all simulations.

The sandwich estimator was used to compute σ̂1,w and σ̂2,w (Stefanski and Boos, 2002;

Strutz, 2010, pag.109). The value of ǫ was choose to be equal to the 0.999-quantile of the

distribution of w∗.

In a secondary analysis, we evaluated the performance of the proposed weights at dif-

ferent percentages of the variance of β̂2,w, when γ = 4. We set ǫ as described in Section

4.1.1.

4.2.2 Simulation’s results

The left-hand-side panel in Figure 2 shows the ratio between the observed mean squared

error of the trimmed weighted mean estimator β̂2,w and that of the optimally weighted

estimator β̂2,ŵ across values of γ, whose expression is analogous to (9). The lines in Figure 2

were smoothed using B-splines with 5 (left-hand-side panel) and 8 (right-hand-side panel)

degrees of freedom, respectively. The optimally weighted estimator performed well in all
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scenarios. At high values of γ, the observed mean squared error of the trimmed estimator

was more than 4 times as large as that of the optimally weighted estimator. The right-

hand-side panel in Figure 2 shows mean squared error (solid line), variance (dotted), and

bias (dashed) for different values of ξ2 when γ = 4. With increasing values of ξ2, the

variance increases and the bias decreases.

5 Age at treatment initiation in HIV-infected patients

The human immunodeficiency virus (HIV) epidemic is a leading global burden with major

economic and social consequences. Antiretroviral therapy is the current standard treatment

for HIV-infected patients. Yet, several key questions still are unsolved, including when to

initiate treatment. CD4-cell count is an indicator used to monitor the immune system,

define the stage of the disease, and make clinical decisions. Once a patient is infected, the

number of CD4 cells rapidly declines. Treatment is generally initiated when it falls below

the threshold of 500 or sometimes 350 cells/µL. During treatment, the count rises again

towards normal levels. Several observational studies have documented the prognosis for

patients who started treatment at different CD4-cell count thresholds. Their findings are

different and occasionally contrasting (HIV-CAUSAL Collaboration et al., 2011; When To

Start Consortium et al., 2009; Kitahata et al., 2009).

5.1 Three target populations

After the introduction of antiretroviral therapy, mortality among treated patients has sub-

stantially declined, and medical and research interest has shifted from mortality to aging

and long-term clinical outcomes (Wright et al., 2013). Recently, age at treatment initiation

has received increasing attention as a potentially important modifier (Deeks and Phillips,

17



0 1 2 3 4 5

0
1

2
3

4

Effect of covariate C

M
S

E
 r

a
ti
o

s

0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Proportion of σ̂w

2

Figure 2: Left-hand-side panel: ratio between the observed mean squared error of the

trimmed weighted mean estimator β̂2,w and that of the optimally weighted estimator β̂2,ŵ

across values of γ. Right-hand-side panel: mean squared error (solid line), variance (dot-

ted), and bias (dashed) for different values of for different values of ξ2 when γ = 4.
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2009).

We investigated the association between CD4-cell count at treatment initiation and that

at five years after initiation across groups of patients starting treatment at different ages.

We used data on 500 subjects from the Swedish Infcare HIV database, which has collected

data from all known HIV-infected patients in Sweden continuously for decades. CD4-cell

count at treatment initiation was classified in two categories, 351−500 and 501+ cells/µL.

Instead of stratifying the analysis by possible age groups, we defined three target pop-

ulations as normal densities centered at age 27, 36, and 44 years. These values correspond

to the 25th, 50th, and 75th percentile, respectively, of the marginal distribution of age in

our sample. Specifically, the target weights for the k-th target population, k = 1, 2, 3, were

calculated as

w∗
i =

φ((agei − µk)/
√
2)

f̂(agei)
(17)

where φ is the standard normal density function, µ1 = 27, µ2 = 36, µ3 = 44, and f̂ is a

non-parametric density estimator. For the latter we used the “density” function available

in R.

5.2 Optimal weights

For each target population, we obtained optimal weights ŵ by solving the following problem
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minimize
w∈Rk

‖w − w∗‖ (18)

subject to σ̂1,w ≤ ξ1 (19)

σ̂2,w ≤ ξ2 (20)

w ≤ ǫ (21)

w ≥ 0 (22)

The symbols σ̂i,w, i = 1, 2 denote the estimated standard errors of the coefficients of the

following weighted linear regression model

E(CD45 | CD40) = β1,w + β4,wICD40≥501 (23)

where CD45 is the count at five year after treatment initiation, CD40 is the count

at treatment initiation, β’s are the regression coefficients to be estimated, and IA is the

indicator function of the event A. When the target weights were applied, the standard

errors of the regression coefficients ranged from 20 to 99, making inference very imprecise.

We therefore constrained the standard errors at three different sets of values: (1) half the

values observed for the weighted estimator with target weights, i.e., ξ2 = σ̂2,w∗/2; (2) 30%

standard error reduction and (3) 10% standard error reduction for the weighted estimator

with target weights, i.e., ξ2 = σ̂2,w∗ . The standard error of the intercept σ̂1,w was left

unconstrained in all analyses. The constant ǫ was set as described in Section 4.1.1.

5.3 Results

Table 1 shows the Lagrange multipliers λ1 and λ2 associated with constraints (19), and (20),

respectively, the square root of objective function
√

n‖ŵ − w∗‖, which can be interpreted
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as the quadratic mean difference between optimal and target weights per observation, and

the estimated optimal weighted coefficients in model (23) at the optimal weights ŵ.

Age 27

ξ2 43 60 77

λ1 0.0 0.0 0.0

λ2 12.4 2.6 0.4
√

n‖ŵ − w∗‖ 0.4 0.2 0.1

β̂1,ŵ, σ̂1,ŵ 547 (29) 543 (36) 540 (40)

β̂2,ŵ, σ̂2,ŵ 101 (43) 131 (60) 151 (77)

Table 1: Lagrange multipliers λ1 and λ2 (multiplied by 100) associated with constraints (19), and (20),

respectively, the square root of objective function multiplied by the sample size
√

n‖ŵ − w∗‖, and the

estimated optimal weighted coefficients with standard errors in brackets for model (23) at the optimal

weights ŵ in the population of patients starting treatment at about 27 years of age.

In patient starting treatment at about 27 years of age, constraining the standard error

σ̂ to be no greater than 43, i.e. ξ2 = 43, half the values observed for the target estima-

tor, resulted in large multiplier and average distance between optimal and target weights,
√

n‖ŵ − w∗‖ = 0.4. When the standard errors were constrained at ξ2 = 60, the multipli-

ers and the average distance between optimal and target weights were all small. Further

increasing the standard errors resulted in a small change in the objective function and neg-

ligible changes in the multipliers. In patient starting treatment at about 27 years of age,

it appeared that the precision of the estimates for the regression coefficients of scientific

interest could be reduced with no major expected loss in bias.

Tables 2 and 3 report the results in patient starting treatment at about 36 and about

44 years of age. The multipliers and objective function showed similar patterns to the

population of 27-year-olds.

The magnitude of the regression coefficients varied across the three target populations,
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Age 36

ξ2 (20) (28) (37)

λ1 0.0 0.0 0.0

λ2 70 18.3 2.8
√

n‖ŵ − w∗‖ 0.4 0.2 0.1

β̂1,ŵ, σ̂1,ŵ 620 (14) 636 (19) 650 (24)

β̂2,ŵ, σ̂2,ŵ 33 (20) 26 (28) 22 (37)

Table 2: Lagrange multipliers λ1 and λ2 (multiplied by 100) associated with constraints (19), and (20),

respectively, the square root of objective function multiplied by the sample size
√

n‖ŵ − w∗‖, and the

estimated optimal weighted coefficients with standard errors in brackets for model (23) at the optimal

weights ŵ in the population of patients starting treatment at about 36 years of age.

indicating that age modified the effect of CD4-cell count at treatment initiation on that at

five years after initiation. The point estimates of the regression coefficients at the smallest

precision were different from those obtained with unconstrained precision. However, they

were all within the confidence intervals of the unconstrained estimates. Corroborated by

the results from the simulation study described in Section 4, this led us to believe that the

inference from the models with standard errors constrained at values smaller than those

observed for the target estimator had high precision and acceptable bias. In all three age

populations mean CD4 count at 5 years was larger at increasing levels of baseline CD4

count.

6 Conclusions

Statistical methods that use probability weights are widely popular in many areas of statis-

tics. Unbiased weighted estimators, however, often show excessively low precision. This

paper presents optimal weights that are solution to an optimization problem and yield
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Age 44

ξ2 (49) (69) (88)

λ1 0.0 0.0 0.0

λ2 12.6 2.3 0.3
√

n‖ŵ − w∗‖ 0.4 0.2 0.1

β̂1,ŵ, σ̂1,ŵ 626 (25) 629 (29) 630 (31)

β̂2,ŵ, σ̂2,ŵ 158 (49) 189 (69) 204 (88)

Table 3: Lagrange multipliers λ1 and λ2 (multiplied by 100) associated with constraints (19), and (20),

respectively, the square root of objective function multiplied by the sample size
√

n‖ŵ − w∗‖, and the

estimated optimal weighted coefficients with standard errors in brackets for model (23) at the optimal

weights ŵ in the population of patients starting treatment at about 44 years of age.

minimum-bias estimators among all estimators with specified precision.

Unlike the traditional trimmed weights, which differ from the target weights only at the

tails of their distribution, the optimal weights are uniformly closest to the target weights.

This feature explains the considerable advantage of optimal weights over trimmed weights

observed across all the scenarios in our simulation study. The simulation study also showed

that sizable precision could often be gained at the cost of negligible bias.

The Euclidean distance utilized in this paper has an intuitive interpretation, but other

measures could be used instead, such as the Bregman divergence, which includes the pop-

ular Kullback-Leibler divergence and Mahalanobis distance (Bregman, 1967). With any

given set of data and inferential objective, these alternative measures may be preferable to

the Euclidean distance.

In applied settings, researchers may consider the following analytic steps: (1) estimate

the parameter of interest with the target weights; (2) if the precision is acceptable no further

steps are necessary; (3) otherwise, constrain the precision and obtain optimal weights as

described in this paper; (4) investigate the choice of ξ as suggested in Section 3.
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When weights are used to identify causal quantities, the presence of extreme probability

weights is related to the violations of the positivity assumption. In this situation, instead

of optimizing the weights, the first thing to do is verify that the causal quantity of interest

is identifiable for any possible combination of the covariates. If not, one should think about

redefining the quantity before moving to the estimation step. An approach for responding

to violations in the positivity assumption is to identify the corresponding observations

which cause extreme weights, exclude them from the analysis for positivity violation and

acknowledge the estimation does not apply to those subjects. More on the diagnosis to

violations in the positivity assumption can be found in Petersen et al. (2012).

The large-sample variance estimator we used in constraint (2) is very popular. In

the presence of extreme outlying probability weights and comparatively small sample sizes,

however, its large-sample approximation may prove inadequate. In our study we found that

constraining all weights by an upper limit, defined in equation (3), satisfactorily improved

this approximation. In practical settings we generally suggest to set ǫ equal to the maximum

value of the target weights w∗. When high precision is desired, we recommend to remove

the most extreme target weights by setting ǫ equal to the 0.99-quantile of the distribution

of w∗.

In many real settings, the probability weights are not known and fixed, but rather they

are estimated from the available data. The inherent sampling error of the estimated weights

can be taken into account when estimating the standard error of the resulting weighted

estimator, and the variance of the two-step estimator can be used in constraint (2) (Carroll

et al., 1988; Murphy and Topel, 2002; Zou et al., 2016).
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