Building Blocks of Quantitative Genetics

1) Single gene model

- effect of genotype on quantitative phenotype
- effect of a parent's genotype on quantitative phenotype of its progeny --- breeding value

2) Multiple gene model

- Functional model for quantitative phenotypes
- Breeding values
- Population distributions of phenotypes and breeding values

Building Blocks of Quantitative Genetics

 Single gene model$p=$ population gene frequency of B $q=$ population gene frequency of b

Population Genotype Frequencies under random mating (\rightarrow Hardy Weinberg Equilibrium)

	Eggs	
	$B(p)$	$b(q)$
$\frac{5}{⿺}$	$B(p)$	p^{2}
	$b(q)$	$p q$

Genetic Value

= effect of an animal's genes on its own phenotypic value

Genotype	BB	Bb	bb
Average phenotype	\mathbf{P}_{BB}	\mathbf{P}_{Bb}	\mathbf{P}_{bb}
example	320	310	280
HWE Frequency	p^{2}	2 pq	q^{2}
$\mathrm{p}=0.8$	0.64	0.32	0.04
Genetic value G	\mathbf{G}_{BB}	\mathbf{G}_{Bb}	\mathbf{G}_{bb}
$=\mathrm{g}_{\mathrm{xy}}-315.2^{*}$	$\mathbf{+ 4 . 8}$	-5.2	-35.2

* Population mean phenotype $=\mathrm{p}^{2} \mathrm{P}_{\mathrm{BB}}+2 \mathrm{pq} \mathrm{P}_{\mathrm{Bb}}+\mathrm{q}^{2} \mathrm{P}_{\mathrm{bb}}=315.2$

Population mean
G

$$
\begin{equation*}
=p^{2} G_{B B}+2 p q G_{B b}+q^{2} G_{b b}= \tag{0}
\end{equation*}
$$

Genetic Value in Falconer Notation

(Falconer and Mackay, 1996)

Genotype	BB	Bb	bb
Average phenotype	P_{BB}	P_{Bb}	\mathbf{P}_{bb}
example	320	310	280
Genetic value	G_{BB}	G_{Bb}	\mathbf{G}_{bb}
$=\mathrm{g}_{\mathrm{xy}}$-mean	+4.8	-5.2	-35.2
Falconer genetic	+a	d	-a
value	+20	+10	-20

$\mathrm{a}=$ additive effect $\quad=\frac{1}{2}\left(\mathrm{P}_{\mathrm{BB}}-\mathrm{P}_{\mathrm{bb}}\right) \quad=+20$
$=$ half the difference between two homozygotes
$d=$ dominance effect $=P_{B b}{ }^{-1} / 2\left(P_{B B}-P_{b b}\right) \quad=+10$
= deviation of heterozygote from homozygote mean

Genetic Value in Falconer Notation

 (Falconer and Mackay, 1996)| bb | 0 | Bb | BB |
| :---: | :---: | :---: | :---: |
| $-a$ | | d | $+a$ |

$$
\begin{aligned}
d=0 & \text { no dominance (additive gene) } \\
0<d<a & \text { partial dominance } \\
d=a & \text { complete dominance } \\
d>a & \text { overdominance }
\end{aligned}
$$

Breeding Value (BV)

$=2 x$ average effect of animal's alleles on progeny phenotype Parent has 2 alleles (e.g. Bb) but only one is (B / b) passed on to a progeny BV = effect of allele $1+$ effect allele 2 on progeny phenotype

Average effect of allele B

Sperm Egg		Frequency	Progeny genotype	Genetic value	Mean genetic value progeny
B	B	P		$\mathrm{G}_{\mathrm{BB}}[4.8]$	$\begin{array}{r} \alpha_{B}=p G_{B B}+q G_{B b} \\ =.8(4.8)+.2(-5.2)=+2.8 \end{array}$
	b	q [.2]	Bb	$\mathrm{G}_{\text {Bb }}[-5.2]$	
Average effect of allele b					
Sperm	Egg	Frequency	Progeny genotype	Genetic value	Mean genetic value progeny
b	B	P [.8]	Bb	$\mathbf{G B b}^{\text {[-5.2] }}$	$\alpha_{b}=p G^{\text {b }}$
	b	9 [.2]	bb	$\mathbf{G}_{\mathrm{bb}}[-35.2]$	(5.2)+2(-35.2)=

Breeding Value (BV)

$$
\begin{gathered}
\quad \text { Average effect of alleles } \\
\alpha_{\mathrm{B}}=\mathrm{pG} \mathrm{~GB}_{\mathrm{BB}}+\mathrm{qG}_{\mathrm{Bb}}=.8(4.8)+.2(-5.2)=+2.8 \\
\alpha_{\mathrm{b}}=\mathrm{pG} \mathrm{Bb}_{\mathrm{Bb}}+\mathrm{qG}_{\mathrm{bb}}=.8(-5.2)+.2(-35.2)=-11.2
\end{gathered}
$$

Breeding value $=$ Sum of average effects
$\mathrm{BV}_{\mathrm{BB}}=\alpha_{\mathrm{B}}+\alpha_{\mathrm{B}}=(+2.8)+(+2.8)=+5.6$
$B V_{B b}=\alpha_{B}+\alpha_{b}=(+2.8)+(-11.2)=-8.4$
$B V_{b b}=\alpha_{b}+\alpha_{b}=(-11.2)+(-11.2)=-22.4$
'Value' of each copy of $\mathbf{B = + 1 4}$

$$
\begin{aligned}
& =\alpha_{B}+\alpha_{b}=\alpha \\
& =\text { allele substitution effect }
\end{aligned}
$$

Genetic value Breeding value (BV)
 Dominance value (D) $\quad \mathrm{D}=\mathrm{G}-\mathrm{BV}$

Genotype	BB	Bb	bb
Average phenotype	P_{BB}	P_{Bb}	P_{bb}
example	320	310	280
Frequency	p^{2}	2 pq	q^{2}
$\mathrm{p}=0.8$	0.64	0.32	0.04
Genetic value	G_{BB}	G_{Bb}	G_{bb}
G=g g_{xy}-Mean	+4.8	-5.2	-35.2
Breeding value	$\mathrm{BV}_{\mathrm{BB}}$	$\mathrm{BV}_{\mathrm{Bb}}$	$\mathrm{BV}_{\mathrm{bb}}$
$\mathrm{BV}=\alpha_{\mathrm{x}}+\alpha_{\mathrm{y}}$	+5.6	-8.4	-22.4
Dominance value	D_{BB}	D_{Bb}	D_{bb}
D=G-BV	-0.8	+3.2	-12.8

Genotype	BB	Bb	bb
Average phenotype	g_{BB}	g_{Bb}	g_{bb}
example	320	310	280
Frequency	p^{2}	2 pq	q^{2}
$\mathrm{p}=0.8$	0.64	0.32	0.04
Genetic value	G_{BB}	G_{Bb}	G_{bb}
$\mathrm{G}=\mathrm{g}_{\mathrm{xy}}-$ Mean	+4.8	-5.2	-35.2
Breeding value	$\mathrm{BV}_{\mathrm{BB}}$	$\mathrm{BV}_{\mathrm{Bb}}$	$\mathrm{BV}_{\mathrm{bb}}$
$\mathrm{BV}=\alpha_{\mathrm{x}}+\alpha_{\mathrm{y}}$	+5.6	-8.4	-22.4
Dominance value	D_{BB}	D_{Bb}	D_{bb}
$\mathrm{D}=\mathrm{G}-\mathrm{BV}$	-0.8	+3.2	-12.8

Population variance $=\Sigma$ frequency * (value-mean) ${ }^{2}$

Additive genetic variance

$$
\sigma_{\mathrm{A}}^{2}=\mathrm{p}^{2} * \mathrm{BV}_{\mathrm{BB}}^{2}+2 \mathrm{pq} * \mathrm{BV}_{\mathrm{Bb}}^{2}+\mathrm{q}^{2} * \mathrm{BV}_{\mathrm{bb}}^{2}=2 \mathrm{pq} \alpha^{2}=62.72
$$

Dominance variance

$$
\sigma_{\mathrm{D}}^{2}=\mathrm{p}^{2} * \mathrm{D}_{\mathrm{BB}}^{2}+2 p q * D_{B b}^{2}+q^{2} * D_{b b}^{2}=(2 p q d)^{2}=10.24
$$

Total genetic variance

$$
\sigma_{\mathrm{G}}{ }^{2}=\mathrm{p}^{2} * \mathbf{G}_{\mathrm{BB}}^{2}+2 \mathrm{pq} * \mathrm{G}_{\mathrm{Bb}}^{2}+\mathrm{q}^{2} * \mathbf{G}_{\mathrm{bb}}^{2}=\sigma_{\mathrm{A}}^{2}+\sigma_{\mathrm{D}}^{2}=72.96
$$

Building Blocks of Quantitative Genetics

1) Single gene model

- effect of genotype on quantitative phenotype
- effect of a parent's genotype on quantitative phenotype of its progeny --- breeding value

2) Multiple gene model

- Functional model for quantitative phenotypes
- Breeding values
- Population distributions of phenotypes and breeding values

Building Blocks of Quantitative Genetics

Multiple gene models

Quantitative phenotype is affected by
many genes plus environment

$$
P=\mu+G+E
$$

$\mu=$ mean (systematic environmental effects)
$\mathbf{G}=$ collective genetic value of all genes

$$
=\Sigma G_{i} \quad G_{i}=\text { Genetic value of } i^{\text {th }} \text { gene }
$$

$E=$ collective effect of all environmental factors

Multiple gene models

$$
\mathbf{P}=\mu+\overbrace{\text { BV }+\mathbf{D}+\mathrm{I}}+\mathbf{E}
$$

BV = collective breeding value of all genes
$=\Sigma B V_{i} \quad B V_{i}=$ Breeding value for $i^{\text {th }}$ gene
D = collective dominance value of all genes
$=\Sigma D_{i} \quad D_{i}=$ Dominance value for $i^{\text {th }}$ gene
I = collective effect of epistatic interactions among genes
$=\Sigma \mathrm{l}_{\mathrm{ij}} \quad \mathrm{I}_{\mathrm{ij}}=$ Interaction between genes i and j

Dominance vs. Epistasis

D_{1}
D_{2}

Chromosome pair 2 gene 3 gene 4

D_{3}
D_{4}

Dominance $=$ interaction between alleles at the same locus/gene

Epistasis = interaction between alleles at the different loci/genes

How does a Parent's phenotype relate

 to phenotype of its Progeny?$$
\begin{aligned}
P_{\text {sire }}=\mu+B V_{\text {sire }}
\end{aligned}+\underbrace{D_{\text {sire }}+I_{\text {sire }}}_{\text {sire }}+\mathrm{E}_{\text {sire }}
$$

$P_{\text {prog }}=\mu+B V_{\text {prog }}+D_{\text {prog }}+I_{\text {prog }}+E_{\text {prog }}$
Only Additive Effects of genes (=Breeding Value) are transmitted from a parent to its progeny
(regardless of mating)
Dominance and Epistatic effects depend on mating

Parents pass a sample half of their alleles to progeny

Parents pass a sample half of their Breeding Value to progeny

E.g.: average additive effect of each capital allele is +1 average additive effect of each small allele is $\mathbf{- 1}$

Relationship between BV of parents and progeny

 half of genes from sire

dam

Mendelian sampling (Random Assortment) effect from sire dam
$\sqrt{\square}$
$B V_{\text {prog }}=1 / 2 B V_{\text {sire }}+1 / 2 B V_{\text {dam }}+R A_{\text {sire }}+R A_{\text {dam }}$

Increased by using parents with high BV Common to full sibs

Quantitative Trait Parameters

$$
\begin{aligned}
& P=\mu+B V+D+I+E \\
& \sigma_{P}{ }^{2}=\sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{I}^{2}+\sigma_{E}^{2}
\end{aligned}
$$

Heritability in the BROAD sense \mathbf{H}^{2}
$=$ fraction of phenotypic variance due to genetics

$$
H^{2}=\frac{\sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{I}^{2}}{\sigma_{P}^{2}}=\frac{\sigma_{G}^{2}}{\sigma_{P}^{2}}
$$

Heritability in the NARROW sense h^{2}
$=$ fraction of phenotypic variance due to additive genetics

$$
h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{P}^{2}}
$$

Population Variances

Between and Within Family Variances

Correlations between Traits

Phenotypic correlation (r_{p})
$=$ correlation between phenotypes for traits 1 and 2 observed on the same individuals

Causes for existence of a phenotypic correlation:

1) Some genes can have effects on both traits
= Pleiotropy
\square genetic correlation $\left(r_{g}\right)$
2) Some environmental factors can affect both traits
\square environmental correlation $\left(r_{e}\right)$

Correlations between Traits

$$
r_{g}=\frac{\operatorname{Cov}\left(B V_{1}, B V_{2}\right)}{\sigma_{B V_{1}} \sigma_{B V_{7}}}
$$

$r_{P}=\frac{\operatorname{Cov}\left(P_{1}, P_{2}\right)}{\sigma_{P_{1}} \sigma_{P_{2}}}$
$r_{E}=\frac{\operatorname{Cov}\left(E_{1}, E_{2}\right)}{\sigma_{E_{1}} \sigma_{E_{2}}}$

factors

(Additive) Genetic Relationship

$$
\begin{gathered}
a_{x y}=\text { additive genetic relationship } \\
\text { between } x \text { and } y
\end{gathered}
$$

$a_{x y}=$ fraction of genes x and y share due to common ancestry
$=$ probability that a randomly chosen allele at a locus (gene) in y is also present in x
$a_{\text {parent-offspring }} \quad=1 / 2$ Parent passes on half of its genes
$a_{\text {grandparent-offspring }}=1 / 4$ Grand sire $\stackrel{1 / 2}{\square}$ Sire $\stackrel{1 / 2}{\square}$ Progeny

(Additive) Genetic Relationship

$a_{x y}=$ fraction of genes x and y share due

 to common ancestry$=$ probability that a randomly chosen allele at a locus (gene) in y is also present in x

$$
a_{\text {half-sibs }}=1 / 2 x^{1} / 2=1 / 4
$$

$$
a_{\text {full-sibs }}=2\left(1 / 2 x^{1 / 2}\right)=1 / 2
$$

$$
V(-,-)
$$

$$
1 / 2 \downarrow
$$

$$
x(-,-)
$$

$$
y(*,-)
$$

Coefficient of Inbreeding

$F_{z}=$ probability that, for a random locus, the allele z received from its sire is identical by descent to
the allele z received from its dam
$=1 / 2$ of the genetic relationship between the sire and dam of z

$$
\begin{gathered}
F_{z}=1 / 2 a_{v w} \\
v(-,-) \stackrel{1 / 2}{\stackrel{a_{v w}}{\rightleftharpoons}} \boldsymbol{w}(-,--) \\
z(-,-)
\end{gathered}
$$

$$
\begin{aligned}
a_{z z} & =1+F_{z} \\
& =1+\frac{1}{2} a_{v w}
\end{aligned}
$$

Coefficients of Inbreeding for simple pedigrees

Mating	(non- inbred parents)	$\mathrm{a}_{\text {parents }}$	$\mathrm{F}_{\text {progeny }}$	
sire	\mathbf{x}	daughter	$1 / 2$	$1 / 4$
sire	\mathbf{x}	grand-daughter	$1 / 4$	$1 / 8$
half-sib	x	half-sib	$1 / 4$	$1 / 8$
full-sib	x	full-sib	$1 / 2$	$1 / 4$
clone	X	clone	1	$1 / 2$

Assumes parents are themselves NOT inbred

Are two alleles the same? Identity By State (IBS) versus Identity By Descent (IBD)

- IBS: if we can genotype individuals o and o' for this locus (QTL), then we can directly determine whether the alleles the two individuals carry are indeed the same - if they are the same, this is referred to as the alleles being IBS.
- IBD: if we cannot genotype the locus (ie. the usual case), then we cannot determine IBS directly but, if \mathbf{o} and \mathbf{o} ' have a common ancestor, than we can determine the probability that the two alleles are identical because they may have originated from a common ancestor

IBD probabilities from pedigree:

$\operatorname{Prob}(o p$ is IBD to o' $p)=P\left(o p \equiv o^{\prime} p\right)$
= probability that alleles op and o'p originated from the same allele of the common ancestor

Example IBD probabilities, coefficients of coancestry and additive and dominance coefficients

	IBD probabilities for pairs of alleles				Coancestry coefficient	$\begin{gathered} \text { Additive } \\ \text { relationship } \\ \text { coefficient } \end{gathered}$	Dominance relationship coefficient
Individual 0-0'	op-o'p	om-o'm	op-o'm	om-o'p	f_{0},	raO_{0},	$\mathbf{u}_{0}{ }^{\prime}$
Sire(o) - Offspring(o')	$1 / 2$	0	0	1/2	$1 / 4$	$1 / 2$	0
Dam - Offspring	0	1/2	$1 / 2$	0	$1 / 4$	$1 / 2$	0
Paternal half-sibs	$1 / 2$	0	0	0	1/8	$1 / 4$	0
Full sibs	$1 / 2$	$1 / 2$	0	0	$1 / 4$	$1 / 2$	$1 / 4$
Identical twins	1	1	0	0	1/2	1	1

Example IBD probabilities, coefficients of coancestry and additive and dominance coefficients

	IBD probabilities for pairs of alleles				Coancestry coefficient	$\begin{gathered} \text { Additive } \\ \text { relationship } \\ \text { coefficient } \end{gathered}$	Dominance relationship coefficient
Individual 0-0'	op-o'p	om-o'm	op-o'm	om-o'p	f_{00},	raO_{0},	u_{00},
Sire(o) - Offspring(o)	1/2	0	0	1/2	$1 / 4$	1/2	0
Dam - Offspring	0	1/2	1/2	0	$1 / 4$	$1 / 2$	0
Paternal half-sibs	$1 / 2$	0	0	0	$1 / 8$	$1 / 4$	0
Full sibs	1/2	$1 / 2$	0	0	$1 / 4$	1/2	$1 / 4$
Identical twins	1	1	0	0	$1 / 2$	1	1

Some side notes:

Coefficient of coancestry (also coeff. of kinship or consanguinity) between 0 and \mathbf{o}^{\prime}
$=f_{00^{\prime}}=$ probability that an allele drawn at random from o is IBD to an allele drawn random from \mathbf{o}^{\prime} $=$ average of the 4 possible IBD probabilities between alleles at o and o'
$r_{00^{\prime}}=2 f_{00^{\prime}}=$ coefficient of relationship $=$ additive genetic relationship coefficient
NOTE: $f_{00^{\prime}}$ is also equal to the coefficient of inbreeding of a progeny produced by 0 and \mathbf{o}^{\prime}
= probability that an individual's alleles are IBD

