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Chapter 1 

Introduction      (Based on Bijma and van Arendonk, 2004) 

 
There are two fundamental questions faced by animal breeders. The first asks: “What is the best 
animal?” Is the best Labrador the one with show-winning conformation or the one with 
exceptional retrieving instinct? Is the best dairy cow the one that gives the most milk; the one 
with the best feet, legs and udder support; or the one that combines performance in these traits in 
some optimal way? These are matters of intense debate among breeders, and, in truth, no one has 
all the answers. The question is an important one, however, because the answers determine the 
desired direction of genetic change for breeding organisations and people keeping farm or 
companion animals. The second question asks, “How do you breed animals so that their 
descendants will be, if not “best”, at least better than today’s animals?”. In other words, how 
can we genetically improve animal populations? This question involves genetic principles and 
animal breeding technology, and is the subject of this course. 
 
1. What is the best animal 
“Best” is a relative term. There is no best animal for all situations. The kind of animal that works 
best in one environment may be quite different from the best animal under another set of 
circumstances. 
 
When we describe animals, we usually characterise them either in terms of appearance or 
performance or some combination of both. In any case, we talk about traits. A trait is any 
observable or measurable characteristic of an animal. 
 
Some examples of observable traits –traits we would normally mention in describing the 
appearance of an animal- are coat colour, size, muscling, leg set, udder conformation, and so on. 
Some examples of measurable traits –traits we would likely refer to in describing how an animal 
has performed- are body weight, daily milk production, time to run a mile, etc. There are 
hundreds of traits of interest in domesticated animals. Note that in none of the examples of traits 
mentioned above is the appearance or performance of a particular animal described. An animal 
may be red and weigh 343 kilograms at 1 years of age, but red coat colour and 343 kg yearling 
weight are not the traits- the traits are simply coat colour and weaning weight. Red and 343 kg are 
the observed categories or measured levels of performance for the traits of coat colour and 
yearling weight. They are the phenotypes for these traits. 
 
In animal breeding, we are mainly concerned with changing animal populations genetically. From 
a genetic point of view, therefore, we want to know not only the most desirable phenotypes, but 
the most desirable genotypes as well. That is because an animal’s genotype provides the genetic 
background for its phenotypes and it is the genetic material that is passed on from parents to its 
offspring. Summarised in an equation: 

P = G + E 
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where P represents an individual’s phenotype, G represents its genotype, and E represents the 
environmental effects- the effects that external (nongenetic) factors have on an animal’s 
performance1. In other words, its genotype and the environment it experiences determine an 
animal’s phenotype. 
 
The word genotype is used in several ways. We can speak of an animal’s genotype in general, 
referring to all the genes and gene combinations that affect the array of traits of interest to us. An 
example used later on in this section involves a “tropically adapted” genotype. In this case, the 
genotype includes all the genes and gene combinations affecting heat resistance, parasite 
resistance, and other traits that make up tropical adaptation. This sense of the word genotype is 
generally implied in this chapter. We can also speak of an animal’s genotype for a particular trait, 
referring to just those genes and gene combinations that affect that trait (e.g., heat resistance). Or, 
as we will see later in this course, we can limit the definition of genotype even further in which 
case it refers to a particular gene only (e.g., an animal has genotype AA for the kappa-casein 
gene). In any case, the genotypes of our animals’ descendants are what we can change with 
breeding methods. Favourable changes in genotypes result in improved phenotypes. 
 
To answer the question “What is the best animal?” we need to determine what traits are of 
primary importance and what genotypes are most desirable for those traits. Most breeders, if they 
have some experience, have an opinion about the key traits and better genotypes. A 
Thoroughbred breeder, for example, might describe the perfect animal as “…. fast, but with 
enough endurance and heart for the longer distances, and easily rated”. A pig breeder version 
might be “…. a healthy pig with a good growth and good carcass quality.” There are probably as 
many opinions of this sort as there are breeders and for the most part they are quite subjective. In 
order to develop a sense of the important traits and best genotypes in a more objective way it is 
important to understand the role of the genotype in the system of the farm. This means that the 
importance of traits will depend on the physical environment under which animals are kept, the 
management system as well as economic factors. If you think about it, it will become clear that a 
number of the components of the system will interact with each other. For example, the best 
preventive health program (management) depends on the kinds of pathogens in the area (physical 
environment) and the costs of vaccines, dewormers, etc. (economics). To determine which health 
program is the most cost-effective, you must have knowledge of alternative programs, local 
pathogens, and treatment costs and understand how treatment programs interact with these other 
factors to affect profitability. Similarly, the best genotype depends on the local environment, the 
management practises in use, and the costs of inputs and prices of animal products. To determine 
the best genotype, you must have knowledge of environmental, management, and economic 
components and understand how they interact with the genotype to affect profitability.  

 
Knowledge of the function of the animal and the interactions between the genotype and other 
components of the system is necessary if we want to develop sensible goals for breeding 
programs, in other words, if we want to develop appropriate breeding objectives. Knowing, for 

                                                           
1 This mathematical expression is oversimplified but it will do fine for the purposes of this discussion. Later on we 
will see that there might also be an interaction between the G and E. 

The genotype of domestic animals determines the degree to which the animals are suited for their function in society. The 
key to determining the traits of importance and optimal genotypes for those traits is a thorough analysis of the function of 
the animal in the entire system and an understanding of the many interactions among components of the system.
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example, that parasite resistance is critically important in tropical climates, breeding objectives in 
the Tropics emphasise traits such as tick count (a measure of tick resistance). In temperate 
regions, on the other hand, less emphasis is placed on parasite resistance and more emphasis is 
placed on other traits. 
 
2. Population structure and breeding objective 
In the process of determining the best animal, you might ask, “Best for whom?”. The answer to 
this question depends on the function of the animal, the structure of the population and the role of 
the “breeder”2 within that structure. Most populations can be thought of as having a pyramidal 
structure: a relatively small number of breeders at the top selling breeding stock to a larger 
number of multipliers who in turn sell animals to a great number of end users. 
 
The pyramid suggests a flow of germ plasm – genetic material in the form of live animals, 
semen, or embryos – from the top down, the elite breeders producing the most advanced animals, 
breeders at the multiplier level replicating those animals, and end users benefiting from the 
genetic improvement occurring at the higher levels. Ideally, breeders at each level try to produce 
animals that will be in the greatest demand by their customers at the next level down, with the 
ultimate result that the best animal is the animal that is the most useful or profitable for the end 
user. End users can thus be defined as the individuals whose particular needs should form the 
basis for determining breeding objectives. 
 
In food and fibre producing species (sheep, cattle, swine, and poultry), the end users are 
commercial producers. These are the persons whose primary products are commodities for public 
consumption. Commercial dairy farmers produce milk; commercial swine producers produce 
pork; commercial poultry farmers produce eggs, chicken and turkey. Commercial producers are 
in most cases not the end of the production chain; beyond them are the processors (dairy plant, 
slaughterhouses), the retailers and consumers. But the commercial producers are end users 
because their particular needs reflect the requirements of the entire production chain. They need 
animals that are physically and reproductively sound, healthy and perform efficiently in their 
environment. They also need animals that possess the product and performance characteristics 
required by the retailers and consumers. The importance of these latter characteristics should be 
reflected – when the market systems functions well - in the prices paid to the commercial 
producers for their products. In the Western world, the interest of consumers in the system of 
production has increased over time. This increased awareness of consumers has resulted in an 
increased emphasis on health and welfare traits in the breeding objective of farm animals and 
reduced emphasis on primary production traits (e.g. amount of milk, growth rate and litter size). 
 
The breeding industries for recreational and companion animal species (horses, dogs, cats, etc.) 
differ somewhat in structure from the livestock industries. The pyramid arrangement is still 
present, and markets for specialised types of animals exist, but seedstock/commercial divisions 
are usually less clear and the end users may not be breeders at all. Consider, for example, 
Labrador retrievers. The end users of Labs are hunters and pet owners. These persons may or may 
not choose to breed their animals, and the qualities that are important to them are those that 
contribute to retrieving ability, companionship, health, aesthetics, or some combination of these 

                                                           
2 Person answering the question 
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traits. Among Labrador breeders there are elite breeders and multipliers, but the term commercial 
producers does not really fit here because no consumable commodity like meat, eggs or milk is 
being produced. The various horse industries provide similar examples. End users of horses range 
from owners of the most valuable racing animals to causal riders to those that keep miniature 
horses as pets. 
 
3. How are animal populations improved? 
The purpose of animal breeding is not to genetically improve individual animals- once an 
individual is conceived, it is too late to change the genotype of that animal- but to improve animal 
populations, to improve future generations of animals. To this task breeders bring two basic 
tools: selection and mating. Both involve decision-making. In selection, it is decided which 
individuals become parents, how many offspring they may produce, and how long they remain in 
the breeding population. In mating, it is decided which of the males we have selected will be bred 
to which of the females we have selected. 
 
Selection  
 

Selection is used to make long-term genetic change in animals. It is the process that determines 
which individuals become parents, how many offspring they may produce, and how long they 
remain in the breeding population. Most of us are familiar with the term natural selection. 
Natural selection is the great evolutionary force that fuels genetic change in all living organisms. 
We commonly think of natural selection as affecting wild animals and plants, but in fact it affects 
both the wild and domestic species. All animals with lethal genetic defects, for example, are 
naturally selected against- they never live to become parents. Natural selection cannot be ignored 
but the kind of selection of primary interest in animal breeding is artificial selection. The idea 
behind selection is simply this: to let individuals with the best sets of genes reproduce so that the 
next generation has, on average, more desirable genes than the current generation of animals. The 
animals with the best sets of genes are said to have the best breeding values. They are –from a 
genetic point of view- the individuals with the greatest value as parents. In selection, we try to 
choose those animals with the best breeding values: the animals that will contribute the best genes 
to the next generation. The result of successful selection is then to genetically improve future 
generations of a population by increasing over time the proportion of desirable genes.  
 
To see how selection works, consider the simplest form of selection: phenotypic selection or 
mass selection. In this type of selection, the performance of the individual is the only information 
used in making selection decisions. No attention is paid to the pedigree of the animal or the 
performance of its sibs (brothers and sisters) or of any progeny it may have produced. For 
example, if you were using phenotypic selection for weaning weight to determine whether a 
particular ewe lamb was to be kept for breeding, you would base your decision strictly on her 
own weaning weight. In practise (meaning outside of scientific laboratories), phenotypic selection 
in its pure form is increasingly rare, but it makes a good example, as we will also see later on 
during this course. 
 
Figure 1.1 depicts phenotypic selection for increased body size in mice. The largest mice in each 
generation are chosen to become parents of the next generation, and the result over time is an 
increase over time in average body size. The idea of using the phenotype for body size as the 
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selection criteria is based on the expectation that phenotype for size is a reasonable indicator of 
the genes affecting body size. It is the genes, after all, which are transmitted from parent to 
offspring. In other words, it is assumed that phenotype for body size in mice is somehow related 
to breeding value for body size. If that were not the case, phenotypic selection for this trait would 
be a waste of time. The relationship between phenotype and breeding value is therefore a very 
important one, and this relationship is reflected by the heritability. When heritability of a trait is 
high, phenotypes are generally good indicators of underlying breeding values, and phenotypic 
selection will be effective in changing the level of the trait. When heritability is low, phenotypes 
reveal little about breeding values, and phenotypic selection will be ineffective. Judging by the 
rapid increase in body size of the mice in Figure 1.1, body size must be quite heritable. Not all 
traits are as heritable. The heritability of fertility in mammals, for example, is generally quite low. 
Estimating the heritability of a trait involves statistical techniques to estimate the extent to which 
relatives resemble each other for the trait of interest, compared with unrelated animals. The actual 
methodology involved and a description of the methods is beyond the scope of this course. 
 
Most animal breeders are unlikely to limit themselves to individual performance information 
alone in making selection decisions. They will use information on relatives as well. For example, 
when a dog breeder purchases an eight-week old puppy from another breeder, she probably does 
not base here choice on just the conformation and personality characteristics evident in such a 
young puppy. She wants to evaluate those same traits in the littermates, the dam and the sire. She 
might want to see a copy of the puppy’s extended pedigree to learn more about its ancestors. 
Similarly, when beef cattle breeders evaluate a sire to use via artificial insemination (A.I.) they 
look further than the sire’s own performance for growth rate. They want to know something 
about the growth performance of his progeny.  

Figure 1.1. Illustration of phenotypic selection for increased body size in mice 
 
The above examples illustrate that selection decisions are based on a combination of information. 
In this course we will outline how the different sources of information can be combined into a 
single prediction of the breeding value of the animal. The strength of the relationship between the 
true breeding value and its prediction is measured by the accuracy. When accuracy is high, 
predictions of breeding values will normally be good ones – they will closely reflect the 
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differences in true breeding values of the animals being evaluated. And because the predictions of 
breeding values are accurate, we can do a good job in selection. 
 
The traits mentioned so far in this chapter – such as weaning weight in sheep, body size in mice, 
fertility, conformation and personality in dogs, milk production in dairy cattle- have all been 
polygenic traits. Many genes affect polygenic traits, and no single gene is thought to have an 
overriding influence. The genetic variation in these traits is due to segregation at many loci. Until 
recently, we knew little about the specific genes affecting these traits – we just know there were 
lots of them. As long as we cannot identify specific genes, we have to rely on phenotypic 
performances, predictions of breeding value to characterise the genotypes of animals. There are 
good grounds for believing that there is a range in the size of effects of genes for any trait, from a 
few with large effect, down to a large number having very small effects. We will see in this 
course that the developments in molecular biology now make it feasible to identify individual 
genes that affect quantitative trait. Information on genetic markers linked to individual genes can 
be used in selection programmes to improve the accuracy of selection (so-called marker-assisted 
selection). Once an individual gene has been identified, its biochemical and physiological roles 
can be studied. The results of these studies will greatly increase our understanding of the nature 
of genetic variation in traits. 
 
Most traits in animals are polygenic in nature. Some traits, however, are simply-inherited – they 
are affected by a single or only a few genes. A good example is the horned/polled character in 
cattle of European origin (Polled means naturally without horns). A single gene determines 
whether a cow is horned or polled. There are also a large number of single-gene disorders that are 
considered to be serious problems but do not prevent affected individuals from reproducing. Well 
known examples include the inherited eye disorder is dogs, the malignant hyperthermia syndrome 
(“halothane gene”) in pigs. Because only a few genes influence simply-inherited traits, selection 
for simply-inherited traits is different from selection for typical polygenic traits. With simply-
inherited traits, we do not deal with breeding values and their predictions, or even with the 
concept of heritability. Rather, we are interested only in knowing whether an individual possesses 
the specific allele or alleles of interest, and we select animals based on that knowledge. If the 
disorder can be detected either by clinical examination or by DNA-testing prior to reproductive 
age, it is possible to select against the disorder effectively. The detection of the gene for 
malignant hyperthermia syndrome in pigs and the subsequent development of a DNA-test have 
greatly increased the opportunity for pig breeders to eliminate the disorder from the population. 
Malignant hyperthermia in pigs is an autosomal recessive disorder which means that it is not 
possible to discriminate between a phenotype of animals with two normal alleles (homozygous 
animals) and animals carrying one defect allele (heterozygous animals, so-called carriers). The 
power of the DNA-test lies in the fact that it facilitates the detection of carriers- animals that are 
heterozygous at the gene causing the genetic disorder- prior to reproductive age.  
 
When we think of selection, we normally envision selection of individual animals within a breed. 
It is also possible to select between breeds. In setting-up a farm or breeding program, we need to 
choose a breed to work with. Between-breed selection provides a way of using breed differences 
to make very rapid genetic change. For many traits, breed differences can be very large. By 
taking advantage of such large differences, between-breed selection can produce genetic change 
much faster than the gradual change possible from selection within a breed. For example, the 
milk production of Black and White cattle in The Netherlands has increased enormously in the 
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1970’s – not through selection within the Dutch Friesian population, but through importation of 
semen from the more productive Holstein-Friesian in the United States and Canada. 

 
 
Mating 
 

Selection is the first of the two basic tools used by animal breeders to make genetic change. The 
second tool is mating. Mating is the process that determines which (selected) males are bred to 
which (selected) females. It is distinctly different from selection. In selection, you choose the 
group of animals you want to be parents; in mating, you match males and females from the 
selected group. 
 
There are many different methods for mating animals, and each method can be defined by a set of 
mating rules: a mating system. There are three reasons for using mating systems: (1) to produce 
offspring with extreme breeding value, (2) to make use of complementarity, and (3) to obtain 
hybrid vigour. Extreme phenotypes can be obtained by mating parents with extreme breeding 
values (high*high and low*low). If an animal of intermediate size is desired, mating large 
animals to small animals is one way to produce it. The parental genotypes are quite different, and 
neither one is optimal, but the mating is complementary because the offspring is optimal. Mating 
a Charolais to an Angus is an example of crossbreeding; the mating of sires of one breed to dams 
of another. In crossbreeding often used to produce breed complementarity, and in fact, the 
Charolais x Angus mating is a complementary one. Charolais are large French cattle known for 
their fast growth and heavy muscling, Angus are smaller British cattle known for their maternal 
ability, and the crossbred offspring benefit for having both kinds of parents. Another reason for 
crossing these two breeds is to produce hybrid vigour or heterosis. Hybrid vigour is an increase 
in performance of crossbred or hybrid animals over that of the pure-breds.  Hybrid vigour occurs 
to a greater or lesser degree in many traits, but it is most noticeable in traits like fertility and 
survivability.  
 
 
4. Multiple trait selection 
In this course, a lot of the discussion of selection and the examples used for illustration will be 
limited to single-trait selection, selection for just one trait. That is because single-trait selection 
provides a simple framework within which to learn the principles of animal breeding. But in the 
real world of animal breeding, selection for a single trait is rare. Breeders are typically interested 
in improving a number of traits. They practise multiple-trait selection. Dairy farmers select for 
traits related to milk production, health, reproduction, type and longevity. 
 
Selection for one trait rarely affects just that one trait. Usually other traits are affected as well. 
Genetic change in a trait resulting from selection on another trait is termed correlated response 
to selection. Correlated response to selection is probably caused by a number of genetic 
mechanisms and results in so-called genetic correlation between traits. 
 
Genetic correlations between traits and the correlated response to selection brought about by them 
can be beneficial. However, if we are unaware of or choose to ignore unfavourable genetic 
correlations, selection for one trait can lead to undesirable response in others. In cattle, for 
example, blind selection for growth rate leads to larger birth weights and more dystocia. If we 
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want faster growth, but cannot tolerate increased dystocia, we must avoid simply selecting for 
growth or against dystocia. We need a way to select for growth rate and against dystocia at the 
same time. We need a method for multiple-trait selection as introduced in this course. 
 
5. Inbreeding 
Inbreeding is the mating of related individuals. That is the simplest definition anyway. Because 
all animals within a population are related to some degree, a more technically correct definition 
of inbreeding is the mating of individuals more closely related than average for the population. 
Inbreeding has a number of effects, but the chief one and the one from which all the others stem 
is an increase in homozygosity- an increase in the number of homozygous loci in inbred animals 
and an increase in the frequency of homozygote genotypes in an inbred population. Because 
inbred individuals have fewer heterozygous loci than non-inbreds, they cannot produce as many 
different kinds of gametes. The result is fewer different kinds of zygotes and therefore less 
variation in the offspring. This illustrates, as we will see in more detail furtheron in this course, 
that inbreeding (more precisely the level of inbreeding in the population) is related to the amount 
of genetic variation. A second consequence of inbreeding is the expression of deleterious 
recessive alleles with major effects, and it is this aspect of inbreeding, more than any other, that 
gives inbreeding a bad reputation. People associate inbreeding with genetic defects. It is true that 
defects caused by recessive alleles often surface in inbred populations. But inbreeding does not 
create deleterious recessive alleles; they must already have been present in a population. 
Inbreeding by itself simply increases homozygosity, and it does so without regard to whether the 
newly formed homozygous combinations contain dominant or recessive alleles. It therefore 
increases the chance of deleterious alleles becoming homozygous and expressing themselves. 
Expression of deleterious recessive alleles with major effects, particularly lethal genes, is a very 
visible consequence of inbreeding. It is an example of the effect of inbreeding can have on certain 
simply-inherited traits. Less obvious is the expression of unfavourable recessive alleles 
influencing polygenic traits. The individual effects of these genes are small but, taken together, 
can significantly decrease performance- a phenomenon known as inbreeding depression. 
 
6. Biodiversity 
An important issue arises in situations where a breed that is native to a particular area appears to 
have lost its function in that area or elsewhere, and consequently is in danger of becoming 
extinct. The question to be raised in this situation is whether such a breed should be preserved. 
The arguments in favour of preservation are that we do not know what type of animals will be 
required in the future, and that we should therefore preserve the available genetic variation 
between breeds (bio-diversity) as an insurance against the unknown future. On the other hand, it 
is argued that people who aim to earn a living from animals cannot afford to look too far into the 
future; they appreciate the arguments in favour of preservation, but are unable to meet the 
relatively high cost of preserving populations that they are unlikely ever to utilise during their 
own lifetimes. At both the national and international level, e.g. FAO and Rare Breeds 
International, concerted efforts are being made to gather relevant data on breeds that seem 
threatened by extinction, and to act, where possible, to save them. Interestingly, the two areas that 
are probably of greatest concern are at the either end of the spectrum of animal improvement. At 
one end we have a large variety of locally adapted native populations (often in developing 
countries) that are under threat from the influx of “improved” breeds and strains from developed 
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countries. And at the other end we have an increasing number of poultry selection lines that are 
discarded when yet another independent poultry breeding company is taken over by a larger and 
often multinational breeding company. 
 
7. Technology and animal breeding 
The face of animal breeding has changed significantly over the past decades. Animal breeding 
used to be in the hands of a few distinguished “breeders”, individuals who seem to have specific 
arts and skills to “breed good animals”. Nowadays, breeding in particular in livestock species is 
dominated by science and technology. In some livestock species, animal breeding is in the hands 
of a few large companies, and the role of the individual breeders seems to have decreased. There 
are several reasons for this change. Firstly, the breeding industry has adopted scientific principles. 
Looking was replaced by measuring, and an intuition was partly replaced by calculations and 
scientific prediction. Other major developments grew from the introduction of biotechnology. 
 
Biotechnology can be broadly defined as the application of biological knowledge to practical 
needs. These technologies fall generally into two categories, reproductive and molecular. Not all 
of this is new. Artificial insemination was introduced in cattle in the fifties. There is no doubt that 
technology had a major impact on rates of genetic improvement in dairy cattle and is just as 
important to the structure of animal breeding programs. Nowadays, technologies like ovum pick 
up, in vitro fertilisation, embryo transfer, cloning of individuals, and selection with the use of 
DNA-information is all on the ground. Some of the technologies are already applied, others are 
further developed, or waiting application. Finally, rapid development of computer and 
information technology has greatly influenced data collection and genetic evaluation procedures 
in animal populations, now allowing comparison of predicted breeding values across farms, 
breeds or countries. 
 
It is important to recognise that the introduction and exploitation of new technologies have large 
social impacts. The introduction of breeding methods typically needs to find the right balance 
between what is possible from a technological point of view and what is accepted by the decision 
makers and users within the socio-economic context of the production system. Ultimately it is the 
consumer who decides which technology is desirable and which is not. In most western societies, 
consumers are increasingly aware of health, environmental and animal welfare issues. Food 
safety and methods of food production are part of their buying behaviour. However, price and 
production efficiency are still major factors determining the sustainability of a livestock sector. 
Successful animal breeding programs need to find and apply the accepted technologies that help 
them remain competitive. This course is mostly concerned with the technical issues involved in 
the application of new technologies in animal breeding.  
 
8.  Components of breeding programs 
Very generally, the aim of animal breeding is to genetically improve populations of livestock so 
that they produce more efficiently under the expected future production circumstances. Genetic 
improvement is achieved by selecting the best individuals of the current generation and by using 
them as parents of the next generation. A breeding program is the organized structure that is put 
into place to genetically improve livestock populations. This chapter deals with the set-up and 
evaluation of animal breeding programs. 
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Message 
A breeding program is the organized structure that is set up in order to realize the desired genetic 

improvement of the population. 
 
Successful genetic improvement requires breeding programs to have (at least) the following 
components: i) A system to record data on selection candidates. Without data on selection 
candidates it is impossible to identify the best individuals. ii) Methods and tools to estimate the 
genetic merit (breeding value) of selection candidates. This step is referred to as "breeding value 
estimation" or “genetic evaluation system”. iii) A system to select the animals that become 
parents of the next generation, and mate them to produce the next generation. iv) A structure to 
disseminate the genetic improvement of the breeding program into the production population. In 
most cases, the breeding population and the production population are (partly) separated. Since 
the aim is to improve livestock production, genetic improvement created in the breeding 
population should be disseminated into the production population. 
 
Data recording and collection: Estimation of breeding values requires phenotypic data on 
selection candidates. Thus a system has to be set up to routinely record data on selection 
candidates. The way data is collected depends on the species and the traits in the breeding goal. 
For example, the product of a dairy cattle breeding company is a straw of semen from a bull. 
However, milk yield cannot be recorded on bulls. Thus to identify bulls of high genetic merit for 
milk yield, one has to collect data on daughters of bulls. Dairy cattle breeding schemes therefore 
have a system to record data on daughters of test bulls. Milk yield of those daughters is recorded 
on common dairy herds, meaning that farmers are involved in the data recording. In beef cattle 
breeding, growth performance of bulls can be recorded on the selection candidates themselves, 
meaning that progeny testing is not necessary. In beef cattle breeding, data collection therefore 
takes place at testing stations where the performance of selection candidates is recorded. The 
quality of the data is fundamental to the success of breeding programs. Without high quality data, 
it is impossible to accurately estimate genetic parameters and breeding values.  
 
Breeding value estimation: After data are recorded, breeding values have to be estimated. The 
common procedure to estimate breeding values in applied livestock breeding is called "BLUP". 
BLUP and selection index theory have the same theoretical basis; both are based on regression of 
breeding values on phenotypes. Compared to selection index theory however BLUP has the 
following advantages; i) It accounts for systematic environmental effects. ii) BLUP is more 
flexible than selection index theory and therefore more suitable as an operational tool. iii) BLUP 
takes account of selection.  
 
Selection and mating: Selection and mating takes place after breeding values are estimated. 
Selection refers to the process of choosing parents to produce the next generation, whereas 
mating refers to the pairing of selected individuals. Thus selection precedes mating. The selection 
process determines the genetic improvement of the population over time, whereas the mating 
process determines how maternal and paternally derived alleles are combined within individuals. 
This chapter will introduce a number of selection and mating procedures and present theory to 
understand the effects of the different procedures.  
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Dissemination of genetic progress: In most species, the breeding and production populations are 
distinct. Genetic progress is created in the breeding population, but the final aim is to improve 
livestock production in the entire population. Thus genetic improvement created in the breeding 
population has to be disseminated into the production population.  
In dairy cattle, the breeding and production populations are not strictly separated. Superior cows 
from the production population can enter the breeding population, meaning that they are selected 
as bull dams. Genetic progress created in the breeding program is transferred to the dairy farms 
by the sale of semen of progeny tested bulls to the farmers. The sale of semen is the primary 
source of income for dairy cattle breeding companies. In addition, a limited number of embryos 
from the breeding population are sold to the dairy farmers. 
 
The situation is different in pig and poultry breeding. Pig and poultry production are based on 
crossbreeding systems. The breeding populations consist of purebred lines, which are mated 
together to produce crossbred offspring. Crossbred offspring are sold to fattening farms or egg 
producers. The breeding and production populations are therefore completely separated; 
crossbred production animals cannot enter the purebred breeding populations. Dissemination of 
genetic superiority of the purebred breeding populations takes place by the sale of crossbred 
offspring.  

 
Message 

A breeding program has the following components: i) a data recording system, ii) methods and 
tools for breeding value estimation, iii) a selection and mating system and iv) a structure to 

disseminate the genetic improvement into the production population. 
 
9. Design and evaluation of breeding programs 
Design of breeding programs: The structure of breeding programs depends on both the species 
and the breeding goal. The optimum design of a breeding program will differ between species 
with large reproductive capacity and species with small reproductive capacity, between breeding 
programs that aim to improve production or reproduction traits, and low heritable traits versus 
high heritable traits.  
 
Judging the quality of breeding programs: Choosing the best breeding scheme among a 
number of alternatives requires yardsticks to measure the quality of breeding schemes. Such 
yardsticks can be developed only when there is a well-defined breeding goal. Given that the 
breeding goal is clearly defined, there are three criteria that summarize the quality of a breeding 
program. These are: 
1. Selection response for the breeding goal traits. 
2. Maintenance of genetic diversity as measured by the rate of inbreeding. 
3. Costs of the breeding program. 

Selection response for the breeding goal traits is the revenue of a breeding program, whereas loss 
of genetic diversity and financial costs are the expenses of a breeding program. Selection 
response, loss of genetic diversity and financial costs are expressed in different units. The 
problem therefore is to combine them into a single criterion for the quality of a breeding program.  
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A comparison of breeding schemes based on selection response and the rate of inbreeding can be 
done as follows. To avoid long-term loss of genetic diversity an upper limit can be set to the rate 
of inbreeding. Next, alternative breeding schemes can be judged by comparing their selection 
response at the same rate of inbreeding. The scheme with the highest selection response at the 
same rate of inbreeding (e.g. 1%/generation) is the best scheme.  
It is more difficult to combine selection response and cost into a single criterion. The question is 
whether the revenues from an increase in selection response, for example in the form of increased 
market share, makes up for the cost of increased selection response. Hence, this is not a genetic 
issue but primarily a commercial and business issue.  
 
Evaluation of breeding programs: Once a breeding program is operational it is essential to 
routinely evaluate the results. Evaluation may consist of comparing realized genetic improvement 
and rates of inbreeding with values expected when designing the breeding program. When there 
are clear differences between expected and realized selection response and inbreeding, then one 
needs to find the causes of those discrepancies and if possible improve the breeding program. 
Reasons that breeding programs do not yield the expected genetic improvement are: i) the use of 
inappropriate models for breeding value estimation, for example when the models do not include 
systematic environmental effects that are present in the data; ii) overestimation of the genetic 
parameters (e.g. h2) resulting in biased EBVs and overprediction of the expected response; iii) 
preferential treatment among selection candidates resulting in selection of individuals that 
received "good treatment" instead of genetically superior individuals, and iv) unexpected 
correlated response in other traits. 
 

Message 
The quality of alternative breeding schemes can be judged by comparing selection response, rate 

of inbreeding and costs of the alternatives. 
 
Methods to design and evaluate breeding programs: To compare alternative breeding 
programs we need methods to quantify expected rates genetic improvement and inbreeding of the 
alternatives. In other words, we need methods to predict rates of gain and inbreeding of breeding 
programs. From a methodological point of view, quantifying the expected rates of gain and 
inbreeding can be done in two manners, either stochastically or deterministically. Stochastic 
simulation is often the easiest way, but in most cases deterministic simulation gives more insight.  
With stochastic simulation, the breeding program is simulated in detail on a computer. Stochastic 
simulation consists of the following cycle. 1. Breeding values and phenotypes of individuals in 
the base generation are simulated. 2. Breeding values are estimated for the base generation 
animals by performing BLUP analyses on their simulated phenotypes. 3. Based on the estimated 
breeding values coming from the BLUP analyses, a number of animals is selected to become 
parents of the next generation. 4. The selected animals are mated and offspring from the matings 
are simulated. Next, steps 2, 3 and 4 are repeated until the desired number of generations is 
simulated. Because in stochastic simulation we simulate an entire population of "real" animals, 
the rates of gain and inbreeding can simply be estimated from the simulated data. Hence, after 
simulating the breeding scheme, the next step is to analyze the simulated data to quantify the rate 
of gain and inbreeding of the breeding scheme. Multiple replicates of the population are 
simulated, and the rates of gain and inbreeding are averaged over replicates. 
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The advantage of stochastic simulation is that one can mimic the true breeding program in detail, 
because the individual animal is simulated. Hence, stochastic simulation can be very precise. 
However, there are two disadvantages related to the use of stochastic simulation to evaluate 
breeding schemes. First, stochastic simulation is time consuming, particularly when large 
populations are simulated. Even with modern computers, simulation of a sufficient number of 
replicates of a large breeding scheme may take several hours or even days. Hence, stochastic 
simulation is less suited as an operational tool to quickly evaluate a number of alternatives. 
Second, with stochastic simulation the user often does not gain as much insight into the breeding 
scheme as with deterministic simulation. For example, with stochastic simulation the user will 
observe that shorter generation intervals generally go together with higher gain, but the 
deterministic equation 'G = irIHVH/L directly shows that gain is inversely proportional to the 
generation interval. Hence, because stochastic simulation does not explicitly model mechanisms 
like accuracy, generation interval, etc, it can be difficult to extend the result to other breeding 
schemes that were not simulated themselves.   
 
Instead of using stochastic simulation, one can use deterministic methods to quantify expected 
gain and inbreeding from alternative breeding schemes. Deterministic methods do not mimic the 
breeding program on the individual animal level, but use (deterministic) equations to predict gain 
and inbreeding. For example, prediction of the rate of gain by using the expression that 'G = 
irIHVH/L is a deterministic methods. Hence, modeling the mechanisms that determine gain and 
inbreeding as mathematical equations allows us to quantify the expected outcome of a breeding 
program. To use deterministic methods one needs to know/derive the mechanisms determining 
gain and inbreeding; it requires more insight into quantitative population genetics than stochastic 
simulation. 
 
Advantages of deterministic methods are 1). It takes limited computation time, so that many 
alternatives can be compared within limited time, and 2). Because the mechanisms are modeled 
explicitly, it gives a lot of insight into gain and inbreeding in breeding programs. In some cases, 
however, it may be difficult to derive accurate deterministic methods. Hence, there is a risk that 
deterministic methods are not precise if they do not properly model the mechanisms determining 
gain and inbreeding in populations. In complicated cases, stochastic simulation may be used to 
check the accuracy and validity of the deterministic equations. Hence, stochastic simulation may 
be helpful to validate and improve deterministic models, and in this way we improve our 
understanding of the mechanisms determining genetic improvement and rates of inbreeding in 
populations. 
 
In this course we will mainly deal with deterministic models. The reason is that for many 
important situations deterministic methods are available and they provide more insight than 
stochastic models.  

Message 
The expected selection response and inbreeding of breeding schemes can be determined by using 

either stochastic simulation or deterministic methods. Deterministic methods provide more 
insight and are computationally fast. Stochastic simulation is precise and useful to validate 

deterministic methods.  
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10. This course 
The course "Animal breeding strategies" introduces the quantitative genetic principles underlying 
the design and implementation of genetic improvement programs in livestock species. Those 
principals will also apply to companion animals, populations of endangered breeds and zoo 
populations. The basic quantitative genetic principles used in this course are handled in Falconer 
and Mackay (1996)3. 
 
The lectures start with a general overview of the field. This course focuses on the definition of 
breeding objectives and the genetic evaluation of breeding strategies. To achieve this, much of 
the course is devoted to the general principles involved in deriving economic weights of the 
various traits that might be genetically improved, making selection decisions between animals, 
designing breeding strategies and determining which strategies will make optimum progress. 
What is presented is a selection of some of the more common tools used in defining breeding 
objectives and designing and evaluating breeding strategies. These tools should be adequate to 
tackle many basic practical problems in animal breeding and provide background to using more 
complex methods. 
 
Estimation of breeding values using best linear unbiased prediction (BLUP) is an important 
element in animal breeding but this lies outside the scope of this course (see AnS562). Attention 
will be paid to selection index theory but the emphasis lies on prediction of genetic gain and not 
on genetic evaluation of animals. 
 
Lecture notes provide students with detailed knowledge on issues related to the design of breeding 
programmes for farm animals. Lectures will 'guide' the student through these notes. In addition 
problems will be supplied. 

                                                           
3 Falconer D.S. and T.F.C. Mackay, 1996. Introduction to quantitative genetics. Longman fourth edition. 
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What Do We Mean By Breeding Strategies?
• Tactics designed to integrate new technologies and 

to improve old ones, for the purpose of 
maximizing performance of existing stock 
(Charles Smith).

• Integration of the components of a breeding 
program into a structured system for genetic 
improvement, with the aim to maximize an overall 
objective.

General aim for animal breeding strategies:
Obtain future generations of animals that will produce
more efficiently under future production circumstances

Genetic andEconomic
Aspects of Animal 

Breeding Strategies
Chapter I Introduction

• Building blocks and structure of animal breeding programs 

• Methods to model/evaluate breeding programs/strategies

• Design of breeding programs/strategies

• Marker-assisted Selection

Basic Principle of 
making genetic progress in a population

Mate the “best” to the “best” 
and do that as quickly as possible.

Genetic Gain / Yr =  
genetic superiority selected parents

generation interval

=  
intensity  accuracy  genetic st. dev.

generation interval
u u

Mate the “Best” to the “Best”
and Do That As Quickly As Possible

Some Questions
• How to find/identify the “best”?
• “Best” for what?
• What are the limits to use of only the “best”?
• How can we shorten the generation interval?
• What are the limits?
• How can a breeding company make a profit from this?

• “Breeding is a business”  Lush, 1945

• How do technologies enter into this?

BREEDING STRATEGIES

Basic Components of a Successful Breeding Program/Strategy

Breeding
Goal/Objectives

Trait recording 
Performance testing

Breeding value estimation 

Selection 
Mating

Product Development
and Dissemination

Mating/Crossbreeding

Improved Commercial Production

Reproductive technology

Molecular genetic technology

Basic Components of a Successful Breeding Strategy
• Breeding Goal or Objectives - where should we go?

� Which traits must be improved? - Economic traits
� How important is each trait? - Economic values

� Focus on improvement of Economic efficiency/profit
� Consider (future) consumer demands

• Trait recording, Performance testing, Breeding value estimation
Identify animals with “best” genetics - relative to breeding goal
� trait performance recording and testing programs

�which traits should be recorded and on which animals?
– field recording
– performance test stations / nucleus herds
– progeny testing

� pedigree registration

Genetic Evaluation        Selection Index (Total merit index)

^
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Components of a Successful Breeding Strategy (cont’d)

• Selection and mating
� use best animals to breed next generation      genetic improvement

� How many and which animals should we select?
� How should we mate them?
� Should reproductive technology be used to increase # progeny/parent?
� balancing rate of genetic gain and inbreeding (and cost)

• Product Development and Dissemination
� program for marketing and distribution of superior genes into the 

commercial sector
• progeny testing, AI
• multipliers

• Mating/Crossbreeding
� optimize combinations of genetic material in commercial animals

Nucleus

Multipliers

Commercial   Producers

Market

BREEDING
GOAL

Testing
Evaluation
Selection

'G

D
is

se
m

in
at

io
n

Elite Breeders

G
en
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In
fo
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Typical Structure of Livestock Breeding Programs

Dairy Cattle Progeny Testing Program

Dams to
breed females

A.I.
Organization

Progeny testing
of young bulls

Commercial cow population

Males to
breed females

(AI)

Superior dams
to breed males

Superior sires
to breed males

Basic steps in the design of breeding programs 
(Harris ‘84)

1)  Describe the production system(s)

2)  Formulate the objective -simplified and comprehensive- of the system

3)  Choose a breeding system and breeds

4)  Estimate selection parameters and (discounted) economic values

5)  Design an animal evaluation system

6)  Develop selection criteria

7)  Design matings for selected animals

8)  Design a system for expansion - dissemination - of genetic superiority

9)  Compare alternative programs

Development of Breeding Strategies 
Summary

• Integration of the components of a breeding program 
into a structured system for genetic improvement, 
with the aim to maximize an overall objective 
(genetic gain, market share).

• Evaluate opportunities for improving upon current 
strategies.

• Evaluate the potential of new technologies.
�How can they best be incorporated into current 

strategies?
�Can their benefits best be capitalized on in a redesigned 

breeding structure?

Breeding Strategies - Summary

What tools are necessary to develop optimum strategies?
• Quantitative genetics theory

� Predicting response to selection, selection index, 
inbreeding, etc.

• Systems analysis
� Predicting and optimizing response in overall objective

• Common sense
• An open mind
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Chapter 2 
 

Stochastic Methods to Model Breeding 
Programs 
 
2.1 Introduction 
 
The objective of genetic improvement of livestock is to enhance the genetic level for traits of 
interest in a population through genetic selection such that some overall goal is achieved or 
enhanced. The overall goal can usually be described in economic terms (e.g. maximize profit per 
animal per year) and will be discussed further in chapter 7.  
 
There are many factors that determine the success of a breeding program. These include design 
and implementation issues. In this course, we will primarily focus on factors related to the design 
of genetic improvement programs, which include factors such as population size, numbers of 
animals to select, criteria for selection, etc.. Because of the number of factors involved, the 
number of alternative programs is numerous. However, ultimately only one program can be 
implemented; animal breeders don’t have the luxury of trying out different options and then 
deciding which one to go with. Thus, we need some other means of deciding a priori which 
breeding program will maximize our overall objective. This requires the ability to model 
breeding programs and to predict outcomes from alternative breeding programs. Furthermore, if 
a good understanding can be developed of the impact alternative design factors have on program 
outcomes, this will lead to the development and choice of better breeding programs. The 
development of this knowledge and associated methods and tools are the focus of this course. 
 
 

2.2 Quantitative Genetic Model 
 
Because most traits of interest in livestock are multifactorial in nature, i.e. affected by a 
potentially large number of individual genes along with environmental factors, quantitative 
genetic theory has become the primary basis for the development of methods to develop, model, 
and evaluate alternative breeding programs. The basis of this theory is the infinitesimal genetic 
model (Falconer and Mackay, 1996). The purpose of this section is to briefly review this theory 
as a basis for developing methods to model breeding programs. 
 
The quantitative genetic model for the phenotype of animal i is: yi = µ + gi + ei  (2.1) 
 

where µ is an overall mean (or sum of fixed effects), gi is the animal’s genetic value, and ei it’s 
random environmental effect. For the purposes of the majority of this course, we will assume we 
are dealing with additive traits such that gi refers to the additive genetic or breeding value.  
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Variables gi and ei are assumed normally distributed with means zero and standard deviations σg 
and σe. Strictly, these assumptions hold for gi only for an unselected (base) population and both 
the mean and variance will change as a result of selection, as will be described later on in the 
course. 
 
With the exception of the sex chromosomes, which we will ignore for the moment, all animals 
carry two copies of every gene.  One copy is inherited by random sampling from the two copies 
carried by the male parent (sire) and the other copy is inherited by random sampling from the 
two copies carried by the female parent (dam).  It follows that the additive genetic value of an 
offspring, go, can be partitioned into three sources, and modeled as follows:  
 

go = ½ gs + ½ gd + gm     (2.2) 
 

where gs and gd are the additive genetic values of the sire and dam and gm is the Mendelian 
sampling contribution.  The Mendelian sampling contribution reflects the random selection of 
copies of parental genes.  Since genes are inherited at random from the parents, the average 
values of gm over a large number of progeny is expected to be zero. 
 
Mathematically, it is said that the expectation of gm, E(gm), is zero. But for any particular 
individual, gm has a real value which varies between individuals.  The range of values of gm is 
determined by its variance, which in the absence of inbreeding, is expected to be 

E( 2
mg

σ ) = ½ 2
0g

σ      (2.3) 

where 2
0g

σ  is the initial genetic variance in the population prior to any selection.  The reason 
for noting the requirement that there be no prior selection in the population will become clear 
later in the course. 
 
With inbreeding, the expected variance of Mendelian sampling terms is reduced by a factor  
[1- ½(Fs+Fd)], where Fs and Fd are the inbreeding coefficients of the sire and dam. Thus:  

     E( 2
mg

σ ) = ½ [1- ½(Fs+Fd)]
2
0g

σ     (2.4) 

 
 
2.3 Stochastic Models for Evaluation of Breeding Programs 
 
The simple quantitative genetic models described in the previous paragraph can be used to 
simulate a breeding program and evaluate its outcomes. Simulations in animal breeding can be 
divided into three types: 

1) stochastic simulation (or sometimes called Monte Carlo simulation) 
2) deterministic simulation  
3) combination of stochastic and deterministic simulation. 

 
Stochastic simulations use random number generators to simulate variability. The two most 
common types of random generators needed are those for the uniform and the normal 
distribution. Most statistical software programs have functions that can generate these. Excel has 
a uniform random number generator: RAND(), which returns a uniform number between 0 an 1. 
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Using the Inverse Transform method (http://www.mathwave.com/articles/random-numbers-
excel-worksheets.html) this function can be used in combination with inverse cumulative 
distribution functions to generate numbers from other distributions in Excel. For example, to 
generate a random number from a standard normal distribution, use:  NORMINV(RAND(),0,1). 
The function NORMINV(p, mean, st.dev.) returns the truncation point for a normal distribution 
that has a fraction p below it. So by drawing p from a random uniform distribution (0,1), a 
random truncation point is generated based on the cumulative distribution function. 
 
With stochastic simulations in animal breeding, which will be described here, a population of 
animals is simulated by generating records for each animal in the population by random 
sampling from pre-defined distributions which are determined by the rules of inheritance and 
origins of environmental effects imposed on the model. A model for stochastic simulation of a 
breeding program is schematically represented in Figure 2.1. The steps involved are described in 
further detail in what follows. 
 
Figure 2.1  General schematic of a stochastic simulation of a breeding program with t time 

periods and m replicates. 
1.  Generate a base population of parents. 
  ↓  
2.  Generate progeny of defined family structure. 
  ↓  
3.  Perform genetic evaluation to obtain selection criteria.  
  ↓  
4.  Rank animals on selection criteria. 
  ↓  
5.  Select animals, following defined rules. 
  ↓         
6.  Mate parents and generate individual progeny. If time < t 
  ↓ if time = t 
7.  Output or store results.   if replicate < m Go to next replicate. 
                                                      ↓  if replicate = m 
8.  Output mean and variances of results and/or stop program. 
 
2.3.1 Generating Base Population Parents 
 
A base population is generated according to the rules of inheritance and structure of the 
population defined by the program control variables.  For example, if the phenotype of a single 
trait, explained by the simple additive inheritance model plus a random environment effect, is 
 

yi = µ + gi + ei 
 
and there are nm males and nf females in the base assumed to be randomly selected, unrelated, 
and non-inbred, then the effects for an animal in the base population could be defined by the 
following programming steps: 
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Do for each animal i: 
 

1. r = random number from normal distribution with mean 0 and variance 1 
 

2. gi = r ∗ ogσ  where 
og

σ  is the additive genetic st. deviation in the base population. 
 

3. r = new random number from normal distribution with mean 0 and variance 1 
 

4. ei = r ∗ eσ  where eσ  is the standard deviation of environmental effects. 
 

5. pi = µ + gi + ei  , where µ is the pre-defined population mean, i.e. a constant. 
 

6. Store pi, gi; and ei 
 
This can be repeated for all animals in the base population.  In order to enable the construction of 
a pedigree file, animals should be given a unique identification number.  The simulation can be 
extended to include other genetic effects, such as dominance or systematic environmental effects 
such as age, herd or year.  Virtually all programming languages have a random number generator 
or an associated library of subroutines containing a routine for random number generation.   
 
2.3.2 Generating Progeny 
 
Once parents are generated, mating pairs are allocated and progeny generated.  Recalling from 
equation 2.1 that the phenotype of progeny k of male parent i and female parent j is  
 

yijk = µ + ½
is

g  + ½
jd

g + 
ijkm

g + ijke     (2.5) 
 
where 

is
g and 

jd
g  are the known additive genetic values of the sire and dam, 

ijkm
g  is the 

Mendelian sampling contribution for individual k and ijke  is the environmental effect.  The 
contributions of 

ijkm
g  and ijke  are obtained for each progeny in turn by sampling from a random 

normal distribution with mean 0 and variance 1 and multiplying the random number by 
mg

σ  or 
eσ , where  2

mg
σ   =  ½ 2

og
σ       in the absence of inbreeding,  

or   2
mg

σ   =  ½( 1 – ½
is

F - ½
jd

F ) 2
og

σ  in the presence of inbreeding,  
where 

is
F  and 

jd
F  are the inbreeding coefficients of the two parents.  Fixed effects can then be 

added to pijk according to the structure specified by the design. 
 
2.3.3 Deriving the Selection Criterion 
 
The selection criterion, such as the phenotypic record, a selection index, or BLUP evaluation, 
would be estimated for each simulated animal as if in real life.  A subroutine of the program 
would be written to perform the evaluations.  The nature of the selection criterion will determine 
the amount of data to be stored.  For example, a selection index involving only collateral 
relatives would not require the parental records to have been stored, whereas animal model 
BLUP evaluation would require all animals and relationships back to the base population to be 
stored.  In contrast to selection indexes, BLUP evaluation will be expensive for computing time 
because of the iterative nature. 
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Selection index or BLUP requires defined variances of traits for single trait evaluation and 
variance/covariance matrixes for multiple traits. Usually these would be set to the base 
population values, though false values may be given deliberately if estimation of sensitivity to 
parameter for BLUP is under investigation.  If relationships back to the base generation are 
included, BLUP automatically allows for change in genetic variance due to selection (see 
Chapter 5). 
 
With selection indexes, the appropriate variance/covariance among traits and relatives at each 
generation are required.  A decision will therefore have to be taken as to whether to use constant 
parameters over time or to allow them to change.  When the same set of parameters is used over 
time it seems logical to use the parameters from the base population, which were also used in 
simulating the data.  In real life, the base population parameters can only be estimated and it 
might therefore be interesting to investigate the consequences of using other than the true 
parameters.  Population parameters will change over time as a result of selection.  These changes 
can be allowed for in constructing the selection index.  In that case a method is needed to obtain 
the parameters at each point in time.  The parameters could be estimated from the phenotypic 
and the true additive genetic values (gijk, gsi, gdj).  This, however, would not be possible in real 
life and hence would not give realistic results.  Alternatively, parameters could be estimated 
using phenotypic records or changes in parameters could be predicted from the selection 
strategy.  Interpretation of the results will obviously depend on the assumptions made. 

 
 
2.3.4 Selecting and Mating Animals for Breeding 
 
In order to produce the next generation of offspring, one needs to define the method of selecting 
the animals to be used as parents and the procedure used in mating the selected parents.  In the 
previous step, the selection criterion has been estimated for all candidates for selection.  
Truncation selection is commonly used for selection, in which the animals with the highest value 
for the selection criteria are selected.  This requires that males and females are separately ranked 
in order of merit for the selection criteria.  Efficient ranking routines are available in most 
language libraries.  Apart from the method of selection, the user has to specify the number of 
animals to be selected and the category of animals, which are eligible for selection.  One might, 
for example, restrict the selection to animals of one particular age class only or have no 
restriction other than that animals need to be old enough to be able to reproduce.  In the latter 
case, selection will be across age groups and it is important to specify up to what age animals are 
eligible for selection. 
 
In the absence of restrictions on selection, selection is simply a process of designating the 
required number of top ranking animals as parents.  With complete assortative mating, the top 
ranked male is allocated to the n top ranked females, the second ranked male to the next n 
females and so on; where n is the number of females per male.  With random mating, each 
selected female is allocated a random deviate, and the females are then ranked on the random 
deviate and mating proceeds as above. 
 
An advantage of stochastic simulation is that restrictions can be imposed on selection and 
mating.  Common examples would be restrictions defining the maximum number of full and half 
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sibs that can be selected as parents, and restrictions that full and half sibs may not be mated 
together.  The imposition of restrictions may make some animals ineligible for mating so that 
more animals must be available for mating than indicated by the defined proportions to be 
selected. 
 
2.3.5 Inbreeding Coefficients 
 
Traditional methods of estimating inbreeding coefficients of individual animals by tracing path 
coefficients, or directly from a complete relationship matrix rapidly become time consuming and 
expensive of storage space as population sizes and number of generation's increase.  With this 
method it was often impractical to estimate inbreeding coefficients in stochastic simulations.  
Several algorithms have been developed, however, for efficiently deriving inbreeding 
coefficients from a pedigree file (e.g. Tier, 1990).  Use of these algorithms reduces computer 
time 10-100 fold compared to traditional methods.  An additional trick is to recognize that all full 
sibs have the same inbreeding coefficient so that only one member of the family needs to have 
the coefficient estimated.  Even so, calculation of inbreeding coefficients can still be expensive 
of computing time when simulating several thousand animals in each of several generations. 
 
2.3.6 Completing the Cycle 
 
Once mating pairs are allocated, progeny can be produced and the cycles repeated until the 
desired number of time periods has been achieved.  At this point, summary statistics can be 
printed or stored, and the next replicate started.  The number of replicates required will depend 
principally on the required accuracy of estimates of response and variance of response, which are 
largely dependent on the size of the population and the number of generations simulated.  Large 
populations have low variance of response and therefore require fewer replicates for a given 
level of accuracy. 
 
Stochastic simulations are often used to validate deterministic simulations.  In this case it is 
desirable to have very accurate estimates of output parameters to estimate biases in the 
deterministic program.  Typically, with smaller populations, several hundreds to 1000 replicates 
are run.  But when using stochastic simulations to evaluate alternative breeding programs, very 
small differences between alternatives are rarely of practical interest so that often fewer, say 100, 
replicates can suffice.  In practice the number of replicates required can be determined once a 
few initial runs have indicated the variance to be expected between runs for a particular size and 
type of population. 
 
 
2.3.7 Multiple Trait Simulations 
 
Multiple trait simulations are a little more difficult because they require simulation of correlated 
random variables. For Excel, a user-defined function is available from 
http://homepage2.nifty.com/hashimoto-t/misc/mnormrand-e.html#download that allows you to 
generate correlated random variables based on a defined vector of means and a variance-
covariance matrix. See Excel file mnormrand.xls .  
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Alternatively, simulation of correlated random variables can be achieved by deriving the n 
uncorrelated principal components of the genetic and environmental variance covariance matrix 
among the n traits, generating random deviates for each principal component in turn and then 
back-transforming these to obtain random deviates for the original traits.  Alternatively, an 
approach using Cholesky decomposition of the original variance covariance matrixes can be used 
which has advantages in terms of computing ease and time.  The Cholesky decomposition 
approach is explained in Appendix C and some examples of simulating correlated traits and 
records for related individuals are given by Van Vleck (1993).  These same methods can deal 
with simulations involving other covariances among random variables, such as g x e covariance 
and additive x dominance genetic covariances. 
 
 
2.3.8 Genome-level models 
 
In the previous, the genetic component was modeled as a normally distributed variable, using the 
infinitesimal genetic model. This model assumes that the trait is affected by a large number of 
unlinked loci, each of small effect. Stochastic models also allow the modeling of a more realistic 
genetic architecture of the trait by simulating individual loci and their placement on 
chromosomes within the genome, along with genetic markers. These models require 
specification of the number of loci, the number and length of chromosomes that these loci are 
located on, and their position (in centi-Morgans, cM) on these chromosomes. Then, the 
following parameters must be specified for each locus: 

1) Locus position - loci could be positioned on chromosomes at random by sampling from a 
uniform distribution, or evenly distributed across the genome. 

2) Number of alleles. 
3) Allele frequencies in the base population – these could be set to be equal or sampled from 

some distribution 
4) Genotypic effects associated with each genotype - these can, for example, for a locus 

with two alleles B, b, be based on the standard single locus genetic model with genotypic 
values of +al, dl, and –al for genotypes BB, Bb, and bb at locus l (Falconer and MacKay, 
1996). Genotypic values assigned to each locus could be sampled from an assumed 
distribution of gene effects, such as from a gamma distribution (e.g. Hayes and Goddard, 
2003), in an attempt to reflect reality. In addition, epistatic effects could be allowed for 
by assigning genotypic effects to combinations of genotypes at multiple loci. 

 
For the base population, alleles at locus l for individual i can then be assigned by drawing two 
random numbers u from a uniform (0,1) distribution. For example, for a locus l with allele 

frequency l
jf  for alleles Bj (j=1, . . , ml), allele j is assigned if ∑∑

=

−

=

<<
j

k

l
k

j

k

l
k fuf

1

1

1

. This random 

sampling of alleles assumes the base population is in Hardy-Weinberg and gametic phase 
equilibrium (Falconer and MacKay, 1996). 
 
The genetic value of individual i then is the sum of genetic effects at each of the q loci:   
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gi =∑
=

q

l

l
ig

1

 , where l
ig  is the genotypic value at locus l for individual i, which is based on the 

simulated genotype of for locus i and the genotypic value that is associated with this genotype. 
 
If all loci are unlinked, progeny genotypes at each locus can be simulated by randomly drawing 
one of the two alleles of the sire and one of the two alleles of the dam. If loci are linked,  
recombination must be allowed for. Consider the two haplotypes for a parent in Figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To create a progeny from this parent, the first step is to simulate the production of two gametic 
chromosomes through meiosis. This can be simulated as follows 
 
1) Starting with the first interval, 12, the probability of recombination (r12) or not (1-r12) is 

drawn from a uniform normal distribution. If u[0,1] < r12, then a recombination takes place 
and we end up with the following two recombinant haplotypes: Q1,q2,q3,q4,q5,q6,q7,q8  and 
q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8 , since all alleles downstream from the cross-over are switched. If 
u[0,1] > r12 then the parental chromosomes stay intact. 

 
2) Proceed to the next interval and draw presence or absence of a recombination event in that 

interval: if u[0,1] < r23 then there is a recombination event and we end up with the following 
two recombinant haplotypes (assuming there also was recombination in interval 12):  
Q1,q2,Q3,Q4,Q5,Q6,Q7,Q8  and q1,Q2,q3,q4,q5,q6,q7,q8. If there is no recombination event, then 
the haplotypes generated in step 1 remain intact. 

 
3) Proceed through all intervals consecutively as described above. 
 

r12 r23    r34    r45  r56      r67   r78    

Q1 Q2    Q3       Q4    Q5  Q6     Q7   Q8 

q1 q2    q3       q4     q5   q6      q7    q8 

Figure 2.1. Simulation of Mendelian inheritance with linked loci 
with recombination in intervals 23 and 56. 

Q1 Q2    q3       q4    q5  Q6     Q7   Q8 

q1 q2    Q3       Q4     Q5   q6      q7    q8 

Parent 

Gametes 
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Once a pair of recombinant gametes has been created, a random one of the two is sampled to 
generate the progeny. A similar procedure is used to generate the other parental chromosome. 
 
Note that this method assumes that recombination events in adjacent intervals are independent 
(no interference – Haldane mapping function). If there is interference, probabilities of 
recombination in interval i must be adapted, depending on presence or absence of a 
recombination event in interval i-1.  
 
Simulation of genomic selection programs or data for genome-wide association analysis also 
requires simulation of historical generations of the population, in order to generate linkage 
disequilibrium between loci. A useful freely available software program for this purpose is 
QMSim (http://www.aps.uoguelph.ca/~msargol/qmsim/QMSim_documentation.pdf Sarargolzaei 
and Schenkel, 2009, University of Guelph). After download, you can run this program from 
command line, using ./QMSim [parameterfile] -o   The download provides several example input 
parameter files. 
 
 
2.4 Advantages and Disadvantages of Stochastic Models 
 
Stochastic simulation depends on relatively simple rules determining inheritance from one 
generation to the next, along with description of the criteria on which all animals will be selected 
for breeding.  Thus, for a given degree of complexity of the breeding program, stochastic 
simulations are often relatively easy to write compared to the deterministic models that will be 
described later.  In addition, stochastic models allow alternative genetic models to be evaluated, 
while deterministic models are primarily restricted to the infinitesimal genetic model. However, 
see Chapter 12 for deterministic models with individual genes along with an infinitesimal 
polygenic component. 
 
With stochastic simulation, the result of any one run reflects random sampling events so that to 
obtain the mean expected response, many replicate runs must be made; but this also allows the 
variance of the response to be estimated.  Because each animal in the population is individually 
identified, stochastic programs can take up a large amount of storage space and involve a very 
large number of mathematical operations for every run.  This, combined with the need to 
replicate, means that stochastic programs take much longer, often very much longer, to run than 
deterministic programs. 
 
Stochastic simulation also does not provide much insight into the impact of various factors on 
response to selection and does not lend itself easily to optimization of breeding programs. Hence, 
in the remainder of this course, the main focus will be on deterministic models, to facilitate an 
understanding of the factors that affect the outcomes of breeding programs. With the tremendous 
increases in computing power, however, stochastic models have become more and more 
attractive and used for the evaluation and analysis of breeding programs in both research and 
practice. 
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Chapter 3

Basic Principles of Response to Selection
3.1 Introduction
When comparing different breeding programs the first question usually asked is "what are the
expected responses to selection of the various plans".  A considerable part of this course will
focus on methods of designing breeding programs, which maximize response to selection.
Although breeding plans are often quite complex, most can usually be understood in terms of a
few simple principles of response to selection.  In this chapter we briefly review these principles
as a foundation for what follows in the rest of the course.

As in many fields of science, there are often many different ways of deriving a particular result.
If you are familiar with the basic principles of quantitative genetics (e.g. as in Falconer and
Mackay, 1996), the results given here should be familiar to you.  However, the approach used
here is slightly different to that given in other texts.  You should be familiar with the derivations
given in texts such as Falconer and Mackay (1996), as those derivations are generally more
rigorous and go back to first principles.  However, the derivations given in this course will often
be more useful when it comes to designing breeding strategies and deriving statistics necessary
for such designs.

3.2 Predicting Genetic Merit of Progeny
The basic guiding principle behind genetic improvement and predicting response to selection is
that parents with high additive genetic values (breeding values) tend to have progeny with high
additive genetic values (and therefore high phenotypes). This follows from the quantitative
genetic model for the additive genetic value of progeny:

go = ½gs + ½gd + gm (3.1)

where gs and gd are the additive genetic values of the sire and dam and gm is the Mendelian
sampling contribution, as described in the previous chapter.

Since E(gm) = 0, the expectation of the progeny additive genetic value, E(gi), from a given pair of
parents is given by

E(go) = ½gs + ½gd

i.e., the expected additive genetic value of the progeny is equal to the mean additive genetic
value of the two parents.
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For determining response to selection, we are interested in the mean of the genetic value of the
progeny generation, E( g o). This can be obtained from the average genetic value of the selected

parents
*

sg  and 
*

dg , where * indicates that the variable refers to selected individuals:

E( g o) =  ½ *
sg  + ½ *

dg (3.2)

For the purpose of understanding and predicting response to selection, it is useful to express the
mean genetic value of selected parents in terms of a deviation from the mean genetic value of all
individuals from which they were selected ( g s and g d):

Thus: E( g o) = ½( *
sg - g s + g s) + ½( *

dg - g d + g d)

= ½( g s +
*
sg - g s) + ½( g d + *

dg - g d)

= ½( g s  + Ss) + ½( g d  + S d)

= ½( g s  + g d) + ½( Ss + S d) (3.3)

Here, S is the genetic superiority of the selected parents, which is defined as the difference
between the mean genetic value of the selected individuals from the mean of the group they were
selected from, e.g.:

Ss = *
sg - g s (3.4)

Response to selection is defined as the difference of the mean genetic value of progeny of
selected parents from the mean genetic value of progeny of all possible parents.  Response is
often denoted as R or !g.  Using the R notation, the expectation of R is given by:

E(R) = g o - g p (3.5)

Where g p = ½( g s + g d)

Using this and the expression of g o in terms of means of the parental generation and genetic
superiorities of the selected parents (equation 3.3), expected response from the current to the next
generation simplifies to:

E(R) = ½( g s  + g d) + ½ (Ss + Sd) - ½( g s + g d)

= ½(Ss + Sd) (3.6)

Thus, expected response from the current to the next generation is determined entirely by genetic
superiority of the selected parents.

Note that for the simple case of equal selection in males and females, Ss = Sd = S and E(R) = S.
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In general we do not know the genetic value of parents.  But we may have a prediction of their

genetic value through an estimated breeding value (EBV), ^g . Usually this prediction is based on
a recognized method of genetic evaluation using different sources of phenotypic information.
Examples are simple phenotypic selection, family index selection, pedigree index selection,
BLUP, and so on.  Whatever the method used, provided the estimate is unbiased, i.e. that

^^
)|( gggE !

then the expectation of the genetic value of an individual progeny is equal to the mean of the
parental predictions, i.e.

E(go) =  ½ sg +½ dg  = pg

where pg  is the mean estimated genetic value of the two parents.

Then, the expected mean genetic value of the progeny generation can be written in terms of the
mean EBV of the selected and all parents by replacing g  in (3.2) and (3.3) by ĝ as:

E( g o) = ½ *ˆ sg  + ½ *ˆ dg

= ½( sĝ   + S s) + ½( dĝ   + S d) (3.7)

Where S  is the estimated genetic superiority of the selected parents, which can be obtained from
(3.4) as:

S = *ĝ - ĝ (3.8)
Similarly, knowing the EBV of the parents, response from the current to the next generation can
be predicted based on (3.5) and (3.6) as:

E(R) po gg^ "! = ½( S s + S d) (3.9)

It should be noted that equation (3.1) can be extended back so that the sire and dam terms are
replaced by their respective sire and dam terms (i.e. grandsires and grandams of individual i) and
so on back through the ancestor pathways, e.g.

go = ½ (½gss + ½gds + gms) + ½ (½gsd + ½gdd + gmd) + gm (3.10)

where ss is sire of the sire, ds is dam of the sire, etc., and gms and gmd are the sire and dam

Mendelian sampling terms.

However, the expectation of go in terms of sg  and dg  in cannot easily be pushed back to include

grandparental ( g ) terms since the expectation of these terms depends on the degree of selection
of the parents.  However, solutions to most problems of design of breeding programs can be
found using the parent-offspring relationships.
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3.3 Predicting Response per Generation
The previous section allows us to predict response to selection if we have a particular group of
chosen parents.  This can be useful where we have an existing population of real animals and we
want to predict the effects of choosing different combinations of animals as parents from that
population.  For example, in dairy cattle we might have several hundred bulls available for use,
each with an estimated breeding value for milk yield.  Assuming that the genetic evaluation
procedure is unbiased, we could ask the consequences of using different numbers of bulls.
Should we use the best 10 available or the best 20?  Semen price is often (but not always!)
related to quality, so that the top 10 bulls will often be more expensive than the next best 10
bulls.  We could then ask how much genetic improvement would we expect when using the
cheaper second set of 10 bulls rather than using the more expensive 10 best bulls.  We will return
to this problem later.

In many cases we are not interested in a particular group of existing animals but in predicting
response to selection in future generations or in the consequences of different designs of animal
breeding programs.  We might ask, if we had a population of 100 bulls (which do not yet exist),
what would be the expected response to selection if we use only the best 10 in comparison to
using the best 20 every generation?  The problem is then to predict the genetic superiority (S) of
different types of possible parents in a hypothetical population as a result of a particular selection
program.

A selection program typically is described by the fraction or number of males and females that
are selected and by the criterion on which they are selected. Our objective here is to develop
theory that can be used to predict the genetic superiority of selected parents based on this
information.

We can assume that in this hypothetical population we have an estimate of each animal’s genetic
value, which we will call an index value that is used as the selection criterion.  We do not need to
know at this stage how this index is derived.  But we will assume that there is a linear
relationship between the index value and the true genetic value.  We can then derive predictions
of genetic superiorities of selected parents based on standard regression theory.

A standard equation for the regression of a dependent variable, y, on an independent variable, x,
takes the form

           yi = a + byx xi + ei (3.11)

and a prediction of y given x is

      iy  = y  + byx(xi - x ) (3.12)

where y is the mean value of y over all values of x, x  is the mean value of x in the population of
all possible values, and xi is the observed value of x for the ith individual for whom we wish to
predict a value of y.  From standard regression theory, the regression coefficient, byx, of y on x is
given by
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byx = 2
x

xy

!
!   = rxy 

x

y

!
!

(3.13)

where !xy is the covariance of x and y, ! 2
x is the variance of x, and rxy is the correlation between y

and x, which is given by

rxy = 
22
xy

xy

!!

!
 (3.14)

In our breeding problem, we want to predict the genetic value of an individual (that will become
a parent) given a recorded or estimated index value, Ii.  Hence from (3.12),

ig  = g  + bgI  (Ii - I ) (3.15)

where Ii is the index value of individual i, g  is the mean genetic value of individuals in the
population, I  is the mean index value of individuals in the population, and bgI is the regression
of genetic values on index values.

If we are predicting the average genetic value of a group of selected (chosen) animals, we get:

 *ĝ  = g  + bgI  ( *I - I ) (3.16)

To obtain a prediction of the genetic superiority of the selected parents, we can substitute (3.16)
into (3.8), recalling that it is the genetic value of parents we are predicting, to get:

S = *ĝ - g  = bgI  ( *I - I ) (3.17)

The right-hand side of equation (3.17) in parentheses, ( *I - I ), is the deviation of index values
of selected animals from the mean index value of all animals in the population.  We can define
the intensity of selection, i, as the deviation of selected from average animals in standard
deviation units, i.e.

i = ( *I - I ) /!I (3.18)

where !I  is the standard deviation of index values.  It then follows from (3.18) that
( *I - I ) = i!I (3.19)

and substituting (3.18) into (3.17) we get

S  = bg.I  i !I (3.20)

From standard regression theory (equation 3.13), we recall that

bg.I   =  rgI 
I

g

!
!

(3.21)
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hence, S  = rgI 
I

g

!
!

 (i !I) = i rgI !g (3.22)

Equation (3.22) gives a general formula to predict genetic superiorities of selected parents, which
are needed to predict the response to selection.  This formula applies whenever the value on
which animals are selected, I, is linearly related to their additive genetic value.  Predicted
superiorities can be used to model the genetic level of future generations in a recursive manner
using equation (3.7):

E( g o) = ½( sg  + S s) + ½( dg   + S d) =

= ½( sg  + is rg,Is !g) + ½( dg   + id rg,Id !g) (3.23)

or model response per generation using equation (3.9):

R = ½(Ss + Sd) = ½(is rg,Is !g + id rg,Id !g) (3.24)

Methods to derive the accuracy of selection, rgI , based on various sources of information will be
reviewed and developed in Chapter 4.  To illustrate, its derivation for the simplest case,
phenotypic selection based on own phenotype, will be given in section 3.4.  The intensity of
selection, i, can be obtained from Normal distribution theory and will be further discussed in
section 3.6.  For the moment, we will assume that the genetic standard deviation, !g, is known
and remains constant over generations.  The latter assumption will be relaxed in Chapter 5.

In the remainder of this chapter, we will first illustrate equation (3.22) for phenotypic selection,
then present how equation (3.23) fits in a general diagram for a deterministic simulation model,
followed by a discussion of approximations for intensity of selection, and finally develop
extensions of this equation to prediction of response with selection across multiple age groups,
response per unit of time, and correlated response to selection.

3.4 Example of Phenotypic Selection
The generality of equation (3.22) can be seen by considering the specific and familiar case of
phenotypic selection.  In this case, the index value, I, is simply the phenotype of the animal.
Assuming only additive genetic and random environmental effects, and assuming phenotype is
adjusted for fixed effects (e.g. the mean), we can write the phenotypic value of an animal, yi as

yi = gi + ei

where ei is the environmental effect, assumed uncorrelated with the additive genetic effect, gi.
Then, gI!  = gy!   = egg,!  = 2

g!

Thus gIr  = gyr  = 
22

2

pg

g

!!

!
 = 

p

g

!
!

 = h (3.25)
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Where h is the square root of heritability.

Thus, from (3.22), S  = i h g! (3.26)

Recalling that heritability is h2 = 2

2

p

g

!

!
,    we get S  = i h2!p (3.27)

Equation (3.27) should be familiar as the standard form for prediction of response to phenotypic
selection.  What we have shown here is that this standard response to phenotypic selection is just
a special case of the general form of response to selection given by equation (3.22).

3.5 Simple Deterministic Model for Predicting Response to
Selection with Multiple Age Groups

A general schematic for a simple deterministic simulation of a breeding program is given in
Figure 3.1. Comparing to Figure 2.1 for a stochastic simulation, it should be clear that while the
general flow of deterministic and stochastic simulations are similar, their fundamental nature is
quite different. Whereas stochastic simulations model individual animals and their genetic and
phenotypic characteristics, deterministic simulations model means and variances of genetic and
phenotypic characteristics of groups of individuals. Recurrence equations such as equation (3.23)
for computing the mean genetic value of progeny are used to compute characteristics of progeny.
Other recursive equations, such as those for variances, will be presented in later Chapters.
Another important component of deterministic simulations is the derivation of the means and
variances of the selection criterion that is used. Variance of the selection criterion depends on the
accuracy of selection. Methods to derive accuracy of selection are presented in Chapter 4.

Figure 3.1  General schematic of a deterministic simulation of a breeding program.

1.  Define means and variances of base population.
!

2.  Derive means and variances of selection criteria.
!

3.  Derive proportions selected from each available group of animals.
!

4.  Derive means and variances of selection criteria of all groups of selected parents.
!

5.  Derive means and variances of underlying traits of selected parents.
!

6.  Derive means and variances of resulting progeny  "  if time < t
!

if time = t
!

7.  Output results and stop program.
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It is clear that, by modeling means and variances, deterministic simulations are computationally
less demanding than stochastic models, besides the fact that deterministic models give expected
responses and are not subject to stochastic variation in response. However, to accurately model
all aspects of a breeding program deterministically does require more complicated models. Some
of these will be described in the remainder of this chapter, while others follow in later chapters.

3.6 Selection Intensity with Truncation Selection
The prediction of response to selection given by (3.24) does not require that we know how
animals are selected, merely that we know the mean index value of selected animals and hence
are able to derive the intensity of selection, i.

Generally in animal breeding we consider the special case of truncation selection.  In this form of
selection, all animals above a certain index value, x, are chose for breeding and all animals below
this value are discarded.  Usually the truncation point is determined by the proportion, p, of
animals to be used for breeding.  In many cases, index values will be normally distributed.  If so,
and under the assumption of large population size, the relationships between p, x (measured in
s.d. units), and i can be derived from the properties of the normal distribution to be equal to:

i = z/p (3.28)

where z is the height of the normal distribution at the truncation point x and is given by

z = 
!2

2x1/2e and !, to 9 decimal places, is 3.141592654.

For individual cases it is often convenient to look up the intensity of selection corresponding to a
particular proportion selected from tables, such as those supplied by Falconer and MacKay
(1996).  When simulating breeding programs on the computer, many computer languages supply
a routine that returns the truncation point, x, corresponding to a particular proportion selected, p.

Realized selection intensity in small populations will be less than predicted by i=z/p as a result of
order statistics (Hill 1976).  Special tables are provided in Falconer and MacKay (1996) for
specific population sizes.  Analytically, intensities for finite population size can be approximated
by adjusting p to p* as follows:

p  = 

n
s

n

s

2
  

)/  ( 2
1

"

"
(3.29)

where s is the number selected and n is the population size (i.e. uncorrected p = s/n), and then
estimating the adjusted i, i  as

i   = 
#

#

p

z
(3.30)

where z* is the height of the normal distribution at the truncation point x* corresponding to p*.
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Derivation of selection intensity from the
standard Normal distribution
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The second assumption that is made in the standard equation for selection intensity (3.28) is that
there is no correlation between the selection criterion (EBV) of the different candidates of
selection.  Correlations between the selection criterion of different candidates are generally due
to: 1) genetic relationships between candidates of selection; and 2) the use of the same
information in calculating the EBV for different animals.

The most extreme example of such a correlation occurs when the population consist of nfs full sib

families with nw individuals per family and selection based on pedigree information ( g o = ½ sg +

½ g d). Note that the same pedigree information is used for all member of the family and, because
this is the only information used, the correlation between their EBV is equal to 1.

The impact of a correlation between the selection criterion of candidates on intensity is related to
the impact of population size on intensity.  This is easy to see from the above example by noting
that the number of alternative values the selection criterion has among all candidates is not n =
nfsnw but only nfs.  Thus, if nc individuals are to be selected, selection is of nc/nw families out of
nfs, rather than of nc individuals out of nfsnw.

Rawlings (1976) proposed a method of adjusting intensity for correlations between EBV, as well
as finite population size based on:

i* = avt!1  i (3.31)

where tav is the average correlation between the selection criterion across all possible pairs of
selection candidates. For a population with unrelated full sib families, tav can be derived based on
the correlation of the EBV of full sibs, tfs, and the correlation of the EBV of unrelated individuals
(=0), each weighted by the number of full-sib pairs and unrelated pairs that exist in the
population (Rawlings, 1976). The result is:

tav = 
1

1
!

!

fsw

w
fs nn

n
t (3.32)

The correlation between the selection criterion of full sibs (tfs) that is required for these
computations can be derived based on the information that contributes to the selection criterion
of each full sib.  Computation of these correlations for more complex selection criteria will be
covered in section 6.1, once selection index methods to derive EBV have been developed.

Meuwissen (1991) extended the method of Rawlings (1976) for populations where full sib
families are nested within half sib families. This situation is more common in livestock
populations and originates from mating each of nhs sires to nfs dams and where each dam
produces nw offspring.  The resulting population consists of nhs half-sib families with nfs full sib
families of nw progeny per half-sib family.  The selection intensity adjusted for finite population
size and correlated EBV can then be approximated as a weighted average of the correlation
between EBV of full-sibs (tfs), the correlation between EBV of half-sibs (ths), and the correlation
between EBV of unrelated individuals (0).  Weighting each correlation by the number of pairs



22

that have that specific relationship results in the following equation for the average correlation
between all possible pairs of individuals:

tav = 
1

)1()1(
!

!"!

hsfsw

fswhswfs

nnn

nntnt
(3.33)

Meuwissen (1991) compared this approximation with Monte Carlo simulation for a range of
correlations and population sizes and found that the approximation worked well when low
correlations between EBV were present or when the number of half-sib families was greater than
10.  The approximation, however, overestimated the Monte Carlo results by up to 32% for a
scheme with high correlations.  A modified approximation for situations with high correlations
between EBV was suggested by Meuwissen (1991).

Modern sire and dam evaluation methods use all available information for the prediction of
breeding values.  The use of more family information increases correlations between EBV of
family members.  In some breeding schemes, selection focuses on young animals because older
animals tend to lag behind genetically.  However, young animals have little information on
individual or on progeny performance.  In that case, family information dominates the prediction
of EBV and correlations between EBV of relatives are expected to be high.  For a correct
comparison of schemes, it is therefore important to consider the effect of correlations between
EBV, especially when the number of families is limited.  In some animal selection experiments
or in the nucleus herd of an animal breeding program, the population is often reproduced by
rather few families, perhaps as few as 10, of at least half sibs.  Even when the total size is larger,
breeding may be carried out through the year with selection only among contemporaries at any
time, and these may represent few families.  In calculating the selection intensity in those cases,
the correlation between family members should not be ignored (Hill, 1976).

3.7 Modeling Selection Across Multiple Age Groups
In many breeding populations, candidates for selection may come from several distinct groups,
each with a different genetic mean and a different variance for the selection criterion.  Examples
might be: 1) dairy sires of various ages, where older sires have lower average genetic merit but
will be more accurately evaluated and hence have higher variance for the selection criterion
when their second crop of daughters become available; 2) selection of boars of different ages,
where older boars will have lower average genetic merit; 3) selection of cows, where older cows
have more lactations and therefore more accurate evaluations.

Genetic means of progeny generations and responses to selection can in these cases be derived
by extending the principle obtained before.  Considering sires and dams separately, assume that
sires can be selected from three age groups, with the relative number of selection candidates in
each age group equal to ws1, ws2, and ws3 (#wi = 1).  Fractions selected from each age group are
ps1, ps2, and ps3, for a total proportion selected of

Ps = ps1 ws1 + ps2 ws2 + ps3 ws3 (3.34)
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Let the genetic mean in age group i be denoted by g si and the accuracy of the selection criterion
by rsi.  For the moment we will assume the genetic standard deviation is the same in each age
group and equal to !g.  This assumption we be relaxed in later chapters.

Then, the genetic mean of selected sires in age group i is equal to:
*
sig  = g si + Ssi (3.35)

where Ssi is the genetic superiority of the selected sires from age group i over the mean of all
males in that age group, and can be predicted as before based on

S si = isi rsi !g (3.36)

where isi is the intensity that corresponds to a fraction selected psi.

Using a weighted average based on the relative number of sires from each age group, the mean
genetic value of selected sires can be computed as:

*
sg = 

sP
1

{ps1 ws1 
*
1sg  + ps2 ws2 *

2sg  + ps3 ws3
*
3sg }

     = 
sP

1 !psi wsi ( g si+Ssi) (3.37)

Similarly, the mean genetic value of dams can be derived as:
*
dg = 

dP
1 !pdi wdi ( g di+Sdi) (3.38)

and the average genetic value of the progeny as

E( g o) =  ½ *
sg  + ½ *

dg

= ½
sP

1 !psi wsi ( g si+Ssi) + ½
dP

1 !pdi wdi ( g di+Sdi) (3.39)

These equations allow for recursive prediction of the genetic mean of the population in
successive time periods.  In Chapter 8, we will formalize these recursive equations in the form of
gene flow.

In the previous, the proportions selected from each age group were pre-determined.  These
proportions may, however, not maximize the average genetic value of the selected parents and,
thereby, the genetic value of progeny.  Thus, referring to sires, the problem is to determine the
proportions to select from each age group such that the average genetic value of the selected
group is maximized, but subject to the constraint that the total proportion selected is equal to Ps.

To address this problem, we’ll assume that the selection criterion Ii for each age group i is
unbiased.  This implies that E(gi|Ii) = Ii and also that the selection criterion can be compared
across age groups.  Thus, individuals with the same value v of the selection criterion in different
age groups are expected to have the same genetic value v.
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The general problem is illustrated in Figure 3.2.  Given the assumptions for the selection
criterion, individuals should be selected by truncating across the distributions of the selection
criterion; replacing an individual in age group 1 that falls just above the truncation point with an
individual from age group 2 that falls just below the truncation point will reduce the expected
genetic value of selected parents.  Thus, the same truncation point should be used for all
distributions.  In practice, this would be equivalent to ranking all individuals based on their EBV
regardless of the age group they belong to, and selecting the top ones.

G ro up  1
P ro p o rtio n =  w 1 

p 1

p 2

p 3

G ro up  3
P ro p o rtio n =  w 3 

G ro up  2
P rop o rtio n =  w 2 

  g 1 g 2 g 3

P  =  p 1w 1 +  p 2w 2 +  p 3w 3

 T

Figure 3.2 Schematic representation of truncation selection of a total 
proportion P across multiple overlapping distributions

!1

!2

!3

Thus, to maximize the genetic value of selected parents, the objective is to find the truncation
point T where selection of sires across all available distributions yields a total proportion selected
of Ps.  There is no algebraic solution to this problem and the answer must be found iteratively.
Bisection is a general, simple, and effective optimization method that can be used for this
problem.  A schematic of a simple computer subroutine to do this is illustrated below.

1. Find for all i the (unstandardized) truncation point, Ti, of the ith distribution that corresponds
to a proportion P selected from that distribution (Ti = g i + xi!i , where xi is the standardized
truncation point and !i the standard deviation of the ith distribution (!i =  rsi!g for our case))
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2. Choose the lowest   Ti  as a lower bound for T ! T1
Choose the highest  Ti  as a upper bound for T ! Tu.    (T must lie between T1 and Tu.)

3. Compute the mean of the upper and lower bound !  Tm = ½ (Tu + Tl)

4. For each distribution i, find the proportion selected, pi, that corresponds to truncation at Tm.

5. Find the total proportion selected for truncation at Tm:  Pm = !piwi

6. If   |Pm – P| < !, where ! is a pre-set convergence criterion, exit the routine and return Tm as
the optimized truncation point.

7. If   Pm < P    then Tm becomes the new upper bound ! set Tu = Tm
If   Pm > P    then Tm becomes the new lower bound ! set T1 = Tm

8. Return to step 3.

Even with a large number of distributions, this program will iterate to a solution with high
accuracy fairly rapidly.  For most applications no more than 5 or 6 rounds of iteration should be
required.

The proportion of animals in each distribution, wi, might reflect structural differences in numbers
(different numbers produced in different groups as designed in the breeding program) and losses
from groups over time due to death, disease, sales, etc.  Differences between groups in
reproductive capacity (fertility) could be incorporated directly into wi, or treated as a separate
factor affecting the effective numbers (in terms of contributions to progeny) in each group after
selection.

3.8 Asymptotic Response per Unit Time
Response defined by equations (3.22) and (3.24) is the response from one generation to the next.
If conditions remain constant over generations, it is also the response per generation.
Generation interval is generally defined as the average age of the parents when their progeny are
born or as the average time between birth of parents and birth of progeny.

Generation intervals vary widely across species.  For example, a generation interval for poultry
and swine can be as short as 1 year, whereas for progeny testing schemes in cattle, generation
intervals for sires are often 7 years or more.  Generation intervals can also be altered within
species by changing the age at which animals are selected and bred.

In general, it is more useful to estimate response per unit time, usually response per year.
Response per year is often given the same notation as response per generation, R.
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When selection is equal in males and females and, therefore, response per generation is equal to
R = S = irgI!g, response per year is obtained by dividing equation (3.22) by the generation
interval, L, to get

R = 
L

ir gIg !, (3.40)

(Note, in general, as here, we must be careful to know whether response, R, is expressed per
generation, per year, or in some other unit of time).

Equation (3.40) holds the key to designing breeding programs.  Response per unit of time is
proportional to the intensity of selection, the accuracy of genetic evaluation, and the square root
of the genetic variance, and is inversely proportional to the generation interval.

3.8.1 Multiple Pathways of Selection

The derivations leading to equation (3.40) assumed that males and females are treated alike.  In
practice this is often not the case.  For example, in most species, males have a higher
reproductive rate than females, thus we need fewer males for breeding and consequently can
have a higher intensity of selection in males than females.  In some species, traits of interest are
recorded only in one sex, obvious examples being milk yield in dairy cattle, litter size in swine,
and rate of egg production in poultry.  This can lead to different accuracies of evaluation in the
two sexes, since one sex has it’s own performance contributing to it’s evaluation while in the
other sex genetic evaluation must be based entirely on information from relatives.  Similarly,
different sexes can have different generation intervals for a variety of reasons, e.g. the sex with
the highest reproductive rate (usually males) may take less time to produce replacement
offspring and hence potentially have the shortest generation interval.

In these cases, response per unit of time can be derived by deriving the sum of genetic
superiorities in males and females (Ss and Sd) by the sum of their generation intervals (Ls and Ld):

R = 
ds

ds

LL
SS

!
!

(3.41)

This is referred to as the ‘steady state’ or ‘asymptotic’ response to selection, which is the
expected response per unit of time after the breeding program has been in operation for several
years.  The reason for this assumption will be made clear in the derivation of the equation, which
follows.

In practice it may take several generations to approach this steady state, and in some cases a true
steady state may never be reached.  It is therefore generally safer to think of R predicted by
equation (3.41) as the prediction of the average rate of response per year, recognizing that
predicted response may well vary from one year to the next.  Even where a steady state response
rate is eventually achieved, genetic response will usually be variable from one year to the next in
the early generations of the breeding program.
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Note that responses from year to year can always be predicted from the recursive equation
(3.23).  A comparison of this approach with the asymptotic response is given in Figure 3.3  Note
that, starting from an unselected population, expected responses fluctuate during the initial years
but stabilize to the asymptotic response after several years of selection.
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Figure 3.3  Example of predicted annual versus asymptotic responses
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Figure 3.4  Asymptotic response to selection for breeding programs 
with overlapping generations
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To derive equation (3.41), we start by describing the genetic mean of progeny in terms of the
average of the genetic mean of the selected parents, from equation (3.23):

g o = ½ *
sg + ½ *

dg  = ½( g s  + Ss) + ½( g d  + S d) (3.42)

Now, referring to Figure 3.4, note that if the asymptotic response of R per year has been
achieved, the genetic mean of male selection candidates is expected to be LsR lower than the
genetic mean of the progeny generation.  This is because males are on average Ls years older
than their progeny and the gain per year is equal to R. Thus, the genetic mean of male candidates
can be expressed as:

g s  = g o - LsR

and similarly, g d  = g o – LdR

Substituting into equation (3.42) we get:
g o = ½( g o - LsR  + Ss) + ½( g o – LdR + S d)

= g o - ½R(Ls + Ld) + ½(Ss + S d)

Rearranging and solving for R results in equation (3.41).

Equation (3.41) applies to a so-called two-path selection program, in which selection differs
between males and females.

CPAB3

2 Pathway Program

x

Sires

Dams

Select

ps rs

pd rs

o+ o+ o+ o+

o o o o

CPAB3

Example
Selection of sheep for weaning weight (WW)

 Sires  - top 5%                      selected based on
 - at 9 months               own WW record

 Dams - top 60%
 - at 9 months               h2 = .30

 = 1.97 kg
 
 gWW

!
CPAB3

Predicting Response in WW

Path % i r = h2
Genetic

Superiority
Gen.

Interval
Sire 5 2.06 .55 2.23 1.17 yr

Dam 60 .64 .55 .69 1.17 yr

2.92 2.34 yr

!GWW = 2.92/2.34 = 1.25 kg/yr

Rendel and Robertson (1950) and Robertson and Rendel (1950) pointed out that in any breeding
program there are actually four basic pathways of genetic improvement, corresponding to the
four sources of parental genes of male and female progeny.  These four pathways are:

" male parents of male progeny (sires of males, sm)
" female parents of male progeny (dams of males, dm)
" male parents of female progeny (sires of females, sf)
" female parents of female progeny (dams of females, df).
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Robertson and Rendel showed that where each of the four pathways of genetic improvement
were separately recognized, response per generation as predicted by equation (3.41) can be
rewritten as:

R = 
dfsfdmsm

dfsfdmsm

LLLL

SSSS

!!!

!!!
= 
"
"

i
i

i
i

L

S
(3.42)

For each path, genetic superiorities can be derived as shown before as:     Si = iiri!g

When for a particular path selection is across multiple age groups, genetic superiority for that
path can be computed as a weighted average of genetic superiorities achieved within each age
group.  To illustrate, referring to the example of selection across three age groups of section 3.6,
the superiority of that path would be computed as:

Ss = 
sP

1
{ps1 ws1 Ss1+ ps2 ws2 Ss2 + ps3 ws3 Ss3} (3.43)

Similarly, the generation interval for this path would be computed as:

Ls = 
sP

1
{ps1 ws1 Ls1+ ps2 ws2 Ls2 + ps3 ws3 Ls3} (3.44)

CPAB3

Selection Across Age Groups

Age
Group

Age at
Birth of
Progeny

%  of
Bull

Dams
%

Selected i r

Genetic
Superiority

ir g

Heifers 2 yr 50% 2.5% 2.34 .55 707.9

1st Lact. 3 yr 30% 1.5% 2.53 .68 946.2

2nd Lact. 4 yr 20% 1.5% 2.53 .72 1001.9

e.g. Selection of Bull Dams g = 550 kg

CPAB3

Selection Across Age Groups

• Pooled Generation 
Interval
Ldm =    50% * 2

+ 30% * 3 
+ 20% * 4

= 2.7 yr

• Pooled Genetic 
Superiority
Sdm =    50% * 707.9 

+ 30% * 946.2
+ 20% * 1001.9

= 838.2 kg

To illustrate a breeding program in which all four pathways of improvement are recognized, we
can consider a conventional progeny testing program for improvement of milk production in
dairy cattle with the use of artificial insemination.  For simplicity we assume all cows reproduce
naturally without the aid of embryo transfer.  In such a scheme, young bulls are tested by mating
to a (hopefully) random sample of cows, the resulting heifers are reared, and their first lactation
performance is recorded.  This daughter lactation information is then used to produce a genetic
evaluation on each young bull, often referred to as the "first proof’’ of a bull.  At this stage the
best bulls can be selected for breeding and the remainder discarded.  In contrast, heifers and
cows are evaluated largely based on their own lactation performance.  In a population of several
hundred thousand recorded dairy cows, several hundred young bulls, perhaps up to a thousand,
would be tested each generation.
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We can now consider each of the four pathways of genetic improvement in a highly efficient
hypothetical progeny-testing program.

Sires of males: Since we only test a few hundred young bulls, and every sire can produce tens of
thousands of doses of semen, we need only a few sires to produce these young bulls each
generation.  Thus we need to select only the top 1 or 2% of tested bulls as sires of sons.
These sires have high accuracy of genetic evaluation, since progeny tests generally give
high accuracy.  The generation interval will, however, be at least 6 years because of the
time from birth of the young bull, through the birth of his first crop of test daughters,
through their first lactation to the birth of his sons.

Sires of females: Since there are several hundred thousand cows to be bred, many more bulls are
required to produce the necessary amount of semen each generation.  In an efficient
scheme, the top 10-15% of young bulls can be selected, giving a lower selection intensity
than for sires of sons.  Accuracy of selection is the same as for sires of sons because they
are chosen on the basis of the same information.  The generation interval is, however,
about a year longer because it takes time to breed a large population of cows and the
better bulls will be used by farmers for a little longer than the not so good bulls.

Dams of males: Since there are several hundred thousand cows and only a few hundred sons are
tested, dams of sons can be selected very intensely, perhaps only the best 0.1 to 0.5%
being required.  But evaluation is based on their own performance, which has lower
accuracy than a progeny test.  These cows could be bred in their second lactation based
on their first lactation performance and part of their second lactation performance, so that
they would be around 4½  to 5 years old at the birth of their sons.

Dams of females: Dairy cows have a very low reproductive rate, producing less than one live
calf per year, after allowing for average calving intervals and mortality of fetuses and
calves.  Allowing for disease and other losses of growing heifers and for the fact that only
half the calves are females, only about 1 in 3 calvings result in a potential replacement
heifer for the dairy herd.  Since average life in the herd in many western countries is often
not much over three lactations, the average cow barely has sufficient time to produce a
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replacement before she leaves the herd.  There is thus very little room for selection of
dams of cows, with perhaps 90% of all cows required for breeding.  Accuracy of
selection would be very similar to that for dams of sires.  However, generation interval is
generally increased by a year or two, since the average cow takes close to three calving to
produce a replacement.

The parameters applying to each pathway are summarized in Table 3.1.

Table 3.1. Intensity and accuracy of selection and generation interval in a highly efficient
hypothetical progeny-testing program for improving milk yield in dairy cattle.

Proportion Genetic Generation
Selected Intensity Accuracy Superiority Interval (yr)

Pathway (pi) (ii) (ri) (Si = i ri!g ) (Li)
Sires of males   2 % 2.42 0.90 2.178 !g 6
Sires of females 10 % 1.75 0.90 1.575 !g 7
Dams of males 0.5 % 2.89 0.60 1.743 !g 5
Dams of females 90 % 0.19 0.60 0.114 !g 6
TOTAL !S = 5.601!g !L = 24

If we assume that genetic variance is the same for all pathways (a common assumption but not
always strictly true; see Chapter 5), then we can use the parameter values in Table 3.1 to obtain
an estimated annual rate of response for this particular breeding program, of

R = 
24

5.601
!g  = 0.233 !g per yr

Response could of course be expressed in many units, but the three most common and probably
most useful are in genetic standard deviations, !g, per year (as above), absolute units per year
(e.g. kg milk per year), or as a percentage of the mean per year.

Imagine that the dairy cattle population above has a mean yield of 6000 kg, that the heritability
(h2) of milk yield is 0.25, and that coefficient of variation (CV) is 0.18, all fairly typical values
for intensive dairy production.  Since

! 2
g = h2 ! 2

p

and ! 2
p  = (cv x x )2,

then ! 2
p  =(0.18 x 6000)2 = (1080)2.

Hence ! 2
g = 0.25(1080)2

And !g = 2
g!  = 0.5 x 1080 = 540 kg.

Hence R = 0.233 x 540 = 125.82 kg per year

or, alternatively, R = 125.82/6000 = 2.1% per year.
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The choice of units will depend on how the results are to be used.  Use of genetic standard
deviation units may be useful to geneticists who think in such terms and allow results to be
readily converted from one population to the next if it is believed that the major variation
between populations is in the absolute amount of genetic variance.  For example, this would be
true if h2 and cv were the same for different populations but the mean level of performance
differed.

Absolute units, such as kg milk per year, are often the most intelligible to people familiar with
the species and trait(s) in question.  For example, there would probably be little point in
presenting results in !g per year if the audience is made up of non-geneticists, such as dairy
farmers, industry, or government officials.

Expressing results in terms of percentage change per year is likely to be understood by a wide
audience.  It also has the advantage of allowing relatively meaningful comparisons of response
for different traits across species.  A good example is given by Smith (1984), who compared the
theoretical response rate for typical breeding programs for sex-limited traits in poultry, swine,
sheep, and cattle.  The traits were egg production in poultry, litter size in swine, litter size in
sheep, and milk production in cattle.  His estimates of absolute response rates were 5.46 eggs per
year, 0.3 piglets per year, 0.04 lambs per year, and 75 kg milk per year.  Expressed in absolute
units, it is clearly very difficult to interpret these results or make any comparison across species.
However, expressed as percentage change per year, the same results were 2.1, 3.0, 2.1, and 1.5%
per year for poultry, swine, sheep, and dairy cattle.  Although not perfect, this does allow us to
draw such general conclusions, as that selection for sex-limited traits should give roughly similar
relative rates of response in different species.  It may come as a surprise to those working with
dairy cattle, that the relative rates of response are lowest for milk production in cattle.

Accounting for use of young bulls
In the previous, the sire to female path only accounted for the use of progeny-tested sires to
breed cows to produce herd replacements. However, young bulls also contribute to the next
generation of females; in a practical breeding program, semen from young bulls can represent as
much as 20% of all inseminations. To account for this, the genetic superiority and generation
interval for sires of females must be computed as a weighted average. Assuming y is the
proportion of females produced from young bulls, genetic superiority of the sire to female path is
computed as:

Ssf = y Syb,f + (1-y) Spb,f

where Syb,f and Spb,f are genetic superiorities of young and progeny-tested bulls that are used to
breed female replacements. In most cases, Syb,f = 0 because pyb,f = 1 and thus iyb,f = 0, unless there
is additional selection of young bulls that are entered into the progeny tests, above and beyond
selection of their parents (which is already covered through the sm and dm pathways). An
example where Syb,f > 0 is preselection of young bulls based on genetic markers (see Chapter 12).

Similarly, the generation interval for the sf pathway is computed as a weighted average of the
generation intervals for the yb,f and pb,f pathways:

Lsf = y Lyb,f + (1-y) Lpb,f
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Young bulls
o o pyf  ryf (typically: pyf = 1

and/or: ryf = 0)

An example is given in Table 3.2, which assumes y = 0.2

Table 3.2. Intensity and accuracy of selection and generation interval in a highly efficient
hypothetical progeny-testing program for improving milk yield in dairy cattle with accounting
for 20% use of young bulls to breed female replacements.

Proportion Genetic Generation
Selected Intensity Accuracy Superiority Interval (yr)

Pathway (pi) (ii) (ri) (Si = i ri!g ) (Li)
Sires of males   2 % 2.42 0.90 2.178!g 6

- Young 100 % 0 0.50 0 2Sires of
females - Proven 10 % 1.75 0.90 1.575 1.260!g 7 6

Dams of males 0.5 % 2.89 0.60 1.734!g 5
Dams of females 90 % 0.19 0.60 0.114!g 6
TOTAL !S = 5.268!g !L =23

Now response per year becomes: R = 
23

5.268
!g  = 0.230 !g per yr

Note that, compared to Table 3.1, response is slightly lower. By changing y, this approach can be
used to optimize the proportion of the population to inseminate with young bulls. Note, however,
that increasing y also increases the number of young bulls that can be tested or, alternatively, the
number of progeny per young bulls. This has consequences for other parameters of the breeding
program. Nevertheless, this method provides a means to look at the impact of various factors on
genetic gain. A spreadsheet to evaluate alternative program parameters is provided.
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3.9 Correlated Response to Selection
Selection for trait i will not only result in genetic change in trait i (Ri) but also in traits that are
genetically correlated to the selected traits.  Genetic change in trait j to selection on trait i is
referred to as correlated response to selection and will be denoted Rji, in contrast to direct
response, which is denoted by Ri.  Similarly, genetic superiorities of parents selected on trait i
will be denoted by Si and superiorities for trait j by Sji.

Following equation (3.22), genetic superiority of parents for trait 2 as a result of selection on an
index for trait 1, I1, can be obtained based on the general equation:

S2.1 = 
212 gIgri ! (3.45)

Here
12Igr is the correlation of the genetic value for trait 2 with the criterion that selection is based

on, i.e. I1.  When the selection criterion I1 is only based on records for trait 1 (single trait
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evaluation), this correlation can be expressed in terms of the accuracy of selection for trait 1 and
the genetic correlation as: !

12Igr
1112 Iggg rr

Then: S2.1 = i
1112 Iggg rr

2g! = ir
g

g
gg

1

2

21 !

!
11Igr

1g! = 1

1

2

21
Sr

g

g
gg !

!
 = 112

Sb gg (3.46)

where 
12ggb is the regression of genetic values for trait 2 on genetic values for trait 1.  This

regression coefficient quantifies the expected genetic change in trait 2 for every unit genetic
change in trait 1.  When the selection criterion is not exclusively based on records for trait 1, e.g.
the index is a multiple-trait index, the same principle holds but derivation of the regression
coefficient becomes more complex.  This will be dealt with in Chapter 4.

Correlated response to selection can now be predicted from direct response by simple regression

techniques: R2.1 = 112
Rb gg  = = 1

1

2

21
Rr

g

g
gg !

!
(3.47)

Where R1 can be predicted using equation (3.41).
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Trait 1 Trait 2
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Phenotype P1 rp P2
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Regression of BV for trait 2 on BV for trait 1
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Example

• Direct response = GWW = 1.25 kg/yr
• Correlated response in birth weight?

= .5 kg
= +.3

!gBWrgWW BW,

! !G b GBW WW A A WWBW WW. "

Selection of sheep on weaning weight

C P A B 3

P re d ic tin g  R e sp o n se  in  W W

Path % i r = h2
Genetic

Superiority
Gen.

Interval
Sire 5 2.06 .55 2.23 1.17 yr

Dam 60 .64 .55 .69 1.17 yr

2.92 2.34 yr

G W W =  2 .9 2 /2 .3 4  =  1 .2 5  k g /y r

CPAB3

Prediction of  Correlated Response

b rA A g
g

g
BW WW

BW

WW

,
(. )

.
.

.3
5

197
076   kg / kg

!GBW WW. (. )( . ) ." "076 125 095  kg /yr

CPAB3

Indirect Selection
• Genetic improvement of a trait of economic 

importance through selection on EBV for a 
correlated trait, e.g.

Select on Somatic Cell Count to improve 
mastitis resistance.
Select on conformation traits to improve herd 
life.
Select on scrotal circumference to improve 
fertility (sheep). 

CPAB3

Indirect Selection (cont’d)

• Advocated over direct selection if:
Correlated trait is recorded and direct trait not.
Correlated trait is less expensive to measure.
Correlated trait is measured earlier in life     L
Correlated trait has higher h2.

CPAB3

Efficiency of Indirect vs Direct 
Selection

1 = correlated trait
2 = economic trait

• Direct selection:

!
#

#
G

ir

L
A g

2
2 2

"
^ !

CPAB3

Efficiency of Indirect vs Direct Selection
(cont’d)

• Indirect selection:  (correlated response in trait
2 to selection on trait 1)

$ %G r Gg
g

g
2 1 11 2

2

1

. ,=

G
L

A g

1
1 1

=
ir^

Efficiency =  
G 2

G2 1.
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3.10 Design of Breeding Programs
The prediction of rate of response to selection given by equation (3.40) and in its more complete
form by equation (3.42) holds the key to understanding many of the basic principles of design of
breeding programs.  In general, response is positively related to intensity and accuracy of
selection and to amount of genetic variation, and is negatively related to generation interval.
Altering a breeding program will often affect several parameters simultaneously and it is the net
effect of all these changes that determines the predicted response to selection.

Consider the dairy cattle progeny testing scheme outlined in section 3.8.1.  We could, for
example, ask the consequence of waiting until potential dams of sires were older and thus had
more lactation records than in the scheme originally outlined.  This would increase accuracy of
evaluation in this pathway somewhat, because of the increase in information available, but would
also increase the generation interval.  Later in this course you will have the tools to predict the
expected change in accuracy, but at this stage we will simply state that by waiting for an extra
year, the accuracy of evaluation in the dams of sires pathway would increase from 0.6 to 0.64
while the generation interval increases from 5 to 6 years.  Thus the predicted rate of response is

now R = 
6  6  7  6

0.6 x 0.19  0.64 x 2.89  0.9 x 1.75  0.9 x (2.42
!!!

!!!
!g   = 0.229 !g per year

which is less than the predicted response of 0.233 !g per year when selecting younger dams of
sires.  Assuming our parameters are appropriate, we would conclude that we should not wait for
extra lactation records on our potential dams of sires.

As another example, we could go on to ask what would happen if we tested more young bulls in
our progeny test program each generation.  If testing resources were limited by having more
young bulls to test, we would have to produce fewer daughters per bull.  Thus accuracy of
selection would decrease (due to having fewer daughters) and intensity of selection would
increase (due to having more young bulls to choose among) in both sire pathways.  But also, if
we had more young bulls tested, we would need more dams to produce these bulls, which would
increase the proportion selected and reduce intensity of selection in the dams of sons pathway.
In such a situation we could vary the number of young bulls tested per generation, calculating the
appropriate selection intensities and accuracies in each pathway and hence derive the expected
rate of response to selection for each number tested.  The number of bulls tested that maximized
response rate could then be identified.

As we will see later in this course, the above approach is only an approximation to the real
world.  But in many cases this approximation can be quite reliable in its own right.  Adapting this
approximation to more complex (realistic?) situations is not necessarily particularly difficult.

Another consideration is that the design that maximizes genetic response is not necessarily the
design that maximizes economic progress.  To evaluate the optimum design from an economic
perspective requires that the economic costs be weighed against the economic benefits of the
designs considered.  In some cases a wide range of designs can give similar rates of genetic
progress, but often at widely differing costs.  In such cases the economically optimum design
may give slightly less than maximum genetic response.
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Chapter 4 
 

Deterministic Models for Estimated Breeding 
Values 
 
The previous chapter established the main factors that affect response to selection, i.e. intensity 
of selection (i), accuracy of selection (r), genetic standard deviation (σg), and generation interval 
(L). The objective of this chapter is to develop methods to model and evaluate accuracy of 
selection, and to evaluate the main factors that determine this parameter. The latter will help us 
with the design of breeding programs. 
  
Accuracy of selection is defined as the correlation between the criterion on which selection is 
based (I) and the objective of selection. For the moment, we will consider the breeding value of a 
single trait to be the selection objective but this will be extended to more complicated economic 
selection objectives in Chapter 6. 
 
The previous chapter showed that when selection is on the individual’s own phenotype, the 
accuracy of selection is equal to the correlation between phenotype and breeding value, which is 
equal to the square root of heritability (h). In practical animal breeding, selection is often not 
solely on own phenotype but on estimates of breeding values (EBV) that are derived from 
records on the animal itself and records on its relatives using Best Linear Unbiased Prediction 
(BLUP) for an animal model (Lynch and Walsh, 1998). An important property of EBV derived 
from an animal model is that all records that are available on the individual and its relatives are 
optimally used, while simultaneously adjusting for systematic environmental effects (e.g. herd-
year-season), such that the accuracy of the EBV is maximized. Given the equation for predicting 
genetic superiority of selected animals, i.e. S = irσg, it is clear that maximizing accuracy is 
crucial to maximizing genetic gain. 
 

  
 
Stochastic simulation models of breeding programs can directly incorporate genetic evaluations 
based on animal models because the data that provide the input for such models are individually 
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simulated. This is not possible for deterministic models. Thus, when developing deterministic 
models for genetic improvement, other methods to model selection and accuracy of EBV from 
BLUP animal models must be used. In addition to allowing deterministic modeling of selection 
on EBV, these methods are also required to develop a basic understanding of factors that affect 
accuracy of selection, which are important for the design of breeding programs, including the 
contribution that different types of records make to accuracy of EBV.  
 
In our development of methods to model accuracy of EBV, we will slowly build our 
methodology up using the following steps: 
 
1. EBV from own records – simple regression 
2. EBV from records on a single type of relatives – simple regression 
3. EBV from multiple sources of information – multiple regression – selection index theory 
4. EBV from BLUP animal models (module B) 
 
As noted above, the common theme through these methods is the use of linear regression for the 
prediction of EBV from phenotypic records. 
 
Before going into these developments, we will first describe some general properties of EBV. 
These properties hold regardless which of the methods listed above is used to estimate the EBV, 
provided the model used for evaluation is correct and systematic environmental factors are 
properly accounted for. 
 
 
4.1 Some general properties of EBV     
 
As indicated above, all methods for prediction of breeding values are based on the principles of 
linear regression: regression of breeding values on phenotypic records. As a result, properties of 
linear regression can be used to derive general properties of EBV. 
 
One important property of EBV is unbiasedness. This means that the expected magnitude of the 
true breeding value of an animal is equal to its estimated breeding value:  

E(gi|
∧

ig ) = 
∧

ig  

This implies that selection on 
∧

g  will maximize the expected value of g for the group of selected 
individuals. A related property is that the regression of true on estimated breeding values is equal 

to 1:   ggb ˆ, = 1 

Given unbiasedness, the accuracy of EBV can be derived as the correlation between true and 

estimated BV as: r = ggr ˆ, = ggb ˆ,
g

g

σ

σ ˆ  =  
g

g

σ

σ ˆ       (4.1) 

and the covariance between true and estimated BV as: 

   =gg ˆ,σ ggr ˆ, gσ ĝσ = 2
ĝσ        (4.2) 

The variance of EBV is then equal to: 2
ĝσ = r2 2

gσ      (4.3) 
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Thus, the variance of EBV is equal to the square of accuracy (also referred to as ‘reliability’) 
multiplied by genetic variance. This shows the importance of accuracy: the larger the accuracy, 
the larger the variance and spread of EBV of animals in the population, the better we will able to 
distinguish between genetically superior and average or inferior animals, and the greater the 
genetic superiority of selected animals will be. This is illustrated in Figure 4.1. 
 

 
 

Like any prediction, EBV also have a prediction error, which is the deviation of true BV from 

the EBV:  εi = gi-
∧

ig  

The variance of prediction errors (prediction error variance, PEV) can be derived as: 

   2
εσ = var(gi-

∧

ig )= 2
ĝσ + 2

gσ - 2 =gg ˆ,σ 2
ĝσ + 2

gσ - 2 2
ĝσ  

      = 2
gσ - 2

ĝσ = 2
gσ -r2 2

gσ  

         = (1-r2) 2
gσ         (4.4) 

Note that  2
gσ = 2

ĝσ + 2
εσ  

Thus, additive genetic variance is partitioned into variance that is explained by the EBV and 
unexplained error variance. The higher the accuracy is, the greater the proportion of genetic 
variance that is explained by the EBV. Also note that the covariance between EBV and 

prediction errors is equal to zero: == −gggg ˆ,ˆ,ˆ σσ ε
2
ĝσ - =gg ˆ,σ 2

ĝσ - 2
ĝσ = 0 

This makes sense because a non-zero covariance would imply that the prediction error contains 
some information that can be used to improve the EBV. 
 
Given an animal’s EBV and assuming normality, the animal’s true BV is expected to follow a 

Normal distribution with mean equal to the EBV and variance equal to (1-r2) 2
gσ : 

   gi|
∧

ig  ~ N(
∧

ig ,(1-r2) 2
gσ )      (4.5) 

 
This distribution is illustrated in Figure 4.2. 
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Prediction errors are expected to follow a Normal distribution with mean zero: 

   εi ~ N(0,(1-r2) 2
gσ )       (4.6) 
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4.2 EBV from own records 
 
In the derivations below, we will assume that phenotypic records, xi, are adjusted for systematic 
environmental effects and deviated from the mean. 
  
4.2.1 Phenotypic Selection 
 
The simplest form of selection is based on EBV derived from a single record of the phenotype of 
the individual itself.  In this case, the EBV can be derived from regression of BV on phenotype 
as: 

∧

ig = bg,x xi = bg,x (phenotype of individual)   (4.7) 
 

The regression coefficient can be derived as: 
bg,x = σxigi /σ

2
p =  σgi+ei,gi /σ

2
p = σ 2

g /σ 2
p = h2   (4.8) 

Thus the prediction of an individual's additive genetic value, expressed as a deviation from the 
population mean, is given by  

∧

ig  = h2 xi       (4.9) 

where xi is the phenotype of individual i expressed as a deviation from the population mean. 
 

The accuracy of selection is: r = ggr ˆ, =σgi,h2xi /σgσh2x  =h2σ 2
g  /hσ

2
g  = h   (4.10) 
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As an example, growth rate in pigs and cattle often has a heritability of around 0.5.  Thus with 

phenotypic selection for growth rate, the EBV of individual i  is:   
∧

ig = 0.5 xi  

and the accuracy of evaluation is:     r  = 5.0  = 0.707. 
 

Alternatively, if we were selecting on a single record for milk yield in cows with a heritability of 

0.25, our EBV would be 
∧

ig  = 0.25 xi and accuracy would be    r = 0.5 
 

 

1) EBV from own records
Effect of Heritability on Accuracy
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4.2.2 Selection on the Mean of Two or more Phenotypic Records on a Single 

Trait 
 
Definition of Repeatability 
 
We can increase accuracy of selection by increasing the number of records collected on each 
individual.  This can be done for traits that are expressed several times during the lifetime of an 
animal.  For example, having two lactation records on a cow should give more information than 
having only one lactation.  For traits with repeated observations, such as milk production, the 
environmental and/or non-additive genetic component of the phenotype can then be separated in 
a permanent component that affects the animal for its lifetime and a temporary component, 
which changes over time.  Thus the phenotype for record j on animal i can be written as: 
 

xij = gi + pei + teij      (4.11) 

 
where pei is a permanent environment effect specific to animal i and teij a temporary 
environment effect that is specific to record j on animal i.  The genetic and permanent 
environment effects are the same for all observations on the same individual.  On the other hand, 
the temporary environment effects for different observations on the same individual are 
uncorrelated.  This implies that all observations on the same individual are genetically the same 
trait.  This leads to the concept of repeatability.  Repeatability, t, is defined as the proportion of 
the total phenotypic variance which is due to permanent effects (environment and genetic) 
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associated with each animal.  Thus, assuming no correlations between the genetic, permanent 
environment, and temporary environment effects, affecting a single observation, 

 

t = 2

22   

p

peg

σ

σσ +
   or    222

22

    
  

tepeg

peg

σσσ

σσ

++

+
    (4.12) 

 
Imagine that a cow, i, has two lactation records, xi1 and xi2, which can be denoted as 

xi1 = gi + pei + tei1 

xi2 = gi + pei + tei2 

The correlation between two records on an individual is rx1x2 = 
 22

2

21

x
   

x

xx

1
σσ

σ
 

where    σx1x2 =  σ(gi+ pei+ tei1, gi+ pei+ tei2) 

      = σ 2
g  + 2

peσ  
 

Hence,    rx1x2 = 
 

  
2

22

p

peg

σ

σσ +
 = t 

 
Thus, the repeatability of a trait is also the correlation between two records for that trait on the 
same individual; literally a measure of how "repeatable'' that trait is over several records. 
 
EBV from Repeated Records on a Single Trait 
 
Imagine a situation where m records are collected on each individual and we wish to select on 
the mean of those m records.  Then, 

∧

ig = xgb ix        (4.13) 

where    ix  = ∑
=

m

ij mx
1j

/        (4.14) 

and xij is the jth record for the chosen trait on individual i.  Thus 

ix = ∑
=

++
m

ijii mtepeg
1j

/)(      (4.15) 

Then,    xgb  = xgσ  /σ
2
x  

The variance of ix is:  σ 2
x  = σ 2

g  + σ 2
pe  + 

m
te
2σ   = tσ 2

p  + 
( )

m
t - p

2 1 σ
  = 

( )
m

t -tm p
2 1  σ+

 
 

  = 
( )

m
tm p

21  1) - ( σ+
      (4.16) 

The covariance is:  xgσ =σ 2
g        (4.17) 
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Thus, xgb = 
( )1  1) - (2

2

+tm
m

p

g

σ

σ
 = 

( ) 11 - 

2

+tm
mh     (4.18) 

And accuracy of selection is given by: r= xgcorr  = 
( ) 2

22

11 - g

g

tm
mh

σ

σ

+
  = 

( ) 11 - 

2

+tm
mh  (4.19) 

 
Note that when t=1 there is no value in recording a trait more than once on an individual.  
Repeated measurements only add additional information when they allow separation of 
temporary and permanent effects acting on an observation. 
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Numerical Example of EBV Based on the Mean of Two or More Phenotypic Records 
 
Consider selection for milk yield with a heritability of 0.25 and a repeatability of 0.5.  Assume 
the observation is the mean of 1, 2, 5 or 10 lactation records.  Substituting h2 = 0.25, t = 0.5 and 
m = 1, 2, 5 or 10 into (4.18) and (4.19) we obtain regression coefficients of 

xgb  = 0.25, 0.333, 0.42 or 0.45 
and accuracies of 

r      = 0.5  , 0.58  , 0.65  or 0.67. 
 
 

4.3 EBV from One Type of Relatives’ Records  
 
The simple regression methods for estimation of BV described in the previous section for own 
records can be extended to one or more records on a single type of relatives.  
 
Imagine a situation where 1 record is collected on each of m relatives of individual i for which 
we want to estimate the breeding value. Each relative j has the same additive genetic relationship 
aij with individual j. Also, the relatives have the same additive genetic relationship to each other, 
ajj’.  
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Then, the BV of individual i can be predicted from the average of the records of its relatives 

based on:   
∧

ig = xgb ix  

where    ix  = ∑
=

m

ij mx
1j

/  

and xij is the record on the jth relative of i. 

Then,    xgb  = xgσ  /σ
2
x  

To derive xgσ , let t be the (intra-class) correlation between phenotypic records on relatives j and 

j’:    t = rxijxij’ = σxijxij’ /σ
2
p  =  σ(gij+ eij , gij’ + eij’)/σ

2
p  

       = (ajj’σ 2
g + c2 2

pσ )/σ 2
p  

            = ajj’h2+ c2      (4.20) 
 
Here c2 is the common environment correlation between records. This parameter quantifies the 
extent to which relatives are exposed to the same environment (e.g. litter mates): 
    c2 = σeijeij’ /σ

2
p        (4.21) 

 
As an aside, note that this equation for the intra-class correlation also holds for repeated own 
records. In that case, ajj’ =1, c2 =σ 2

pe /σ 2
p  , and thus t = h2 + σ 2

pe /σ 2
p = (σ 2

g +σ 2
pe )/σ 2

p , which is 
equal to repeatability (see equation 4.12). 
 
The variance of the mean of m records with intra-class correlation t can be derived as: 

σ 2
x  = Var(∑

=

m

ij mx
1j

/ )   = 2

22 )1(
m

tmmm pp σσ −+
  = 2)1(1

pm
tm
σ

−+   (4.22) 

The covariance is:  xgσ = aijσ 2
g        (4.23) 
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Thus, xgb = 
( )1  1) - (2

2

+tm
ma

p

gij

σ

σ
  = 

( ) 11 - 

2

+tm
mhaij    (4.24) 

 

And, accuracy of selection is given by, r= xgcorr = 
( ) 11 - 

2

+tm
mhaij    (4.25) 

 
Note that for repeated own records aij =1 and equations (4.24) and (4.25) simplify to equation 
(4.18) and (4.19). 
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4.4 EBV from Multiple Sources -  Selection Index 
 
When records are available from multiple sources, e.g. records on the animal itself, its dam, half-
sibs, progeny, etc., it will obviously be most beneficial to use all records to estimate the breeding 
value. This can be achieved by extending the simple regression methods described in the 
previous to a multiple regression setting: 

∧

ig = b1x1 + b2x2 +…+ bmxm       (4.26) 
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where xi represents the ith source of records, which could be an individual record or the mean of 
records on a given type of relative, and bi are partial regression coefficients. Equation (4.26) is 
called a selection index and the coefficients bi are called index weights. The methodology that is 
used to derive the optimal index weights, i.e. those that maximize the accuracy of the EBV, is 
called selection index theory.  
 
The selection index was first proposed by Smith (1936) for use in plant breeding for 
simultaneous selection on multiple traits, and seven years later, but apparently independently, by 
Hazel (1943) for animal breeding.  In this Chapter we shall first discuss the basic problem, then 
go on to derive selection index equations, and then illustrate their use with some examples. 
 
Selection index theory deals with the general problem of combining information from a variety 
of sources in such a way that the most accurate predictor of the overall genetic merit for a pre-
defined combination of traits is obtained.  Two separate types of selection indexes can be 
distinguished: 1) the economic selection index, where information from several recorded traits is 
used to predict genetic merit for overall economic value, and 2) the family selection index, 
where information from a single trait on various relatives is combined to predict the genetic 
merit of an individual for that trait. 
 

 

 

 

 
 
The economic selection index and family selection index are special cases of the general 
selection index, where the selection index is defined as a linear function of a series of 
observations which when selected upon maximizes response of an aggregate genotype, which is 
a linear function of the additive genetic values of a defined set of traits. Although the focus in 
this Chapter is prediction of breeding values for a single trait, we will develop the theory of 
selection indexes within the context of the economic index because it is more general. We will 
then discuss the family index as a special case of the economic selection index and go into more 
detail into family indexes and their extension to modeling BLUP EBV. We will come back to 
various applications related to economic indexes in Chapter 5. 

 

4.4.1 Selection Index theory 
 
In economically oriented breeding programs, the trait that we want to improve could be called 
economic merit.  The breeding objective of our program is then to maximize improvement of 
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economic merit.  Economic merit might be defined in different ways, e.g. as profit per animal, 
profit per enterprise, economic efficiency, or something else.  We will return to this problem in 
later Chapters.  For the present, it is only necessary to recognize that the breeding objective is a 
general statement of the economic genetic goal of the breeding program. 
 
For a given definition of the breeding objective, there will likely be several or many traits, which 
would contribute to the objective.  The aggregate genotype is then defined as a function of the 
additive genetic values of the traits of interest of an individual, which if selected upon would 
achieve the breeding objective.  The function need not necessarily be linear, but in many cases an 
approximate linear relationship can be found that adequately defines aggregate genotype over the 
range of genetic values encountered (see later chapters).  If the function is a linear function, then 
the aggregate genotype, H, can be written as 

 
H = v1g1 + v2g2 +… + vngn = v’g    (4.27) 

 
where gi is the additive genetic value of trait i, expressed as a deviation from the population 
mean, and vi is a weighting factor (usually, but not necessarily, an economic weight) for trait i. In 
vector notation, v’ = [ v1 , v2 , … , vn] and g’ = [ g1 , g2 , … , gn] . 
 
In practice, the additive genetic values (i.e. true BV) of the various traits for an individual are not 
known.  However we can record each individual's performance for a number of traits.  The 
observations on these traits can then be combined into a selection index, I of the form,  

 
I = b1x1 + b2x2 + … +  bmxm = b’x    (4.28) 

 
where xj is the jth phenotypic observation, as a deviation from the population mean, and bi is a 
selection index coefficient (weight) for that observation. In vector notation, b’ = [ b1 , b2 ,… , bm] 
and x’ = [ x1 , x2 , … , xm]. In principle, observations xj do not necessarily have to be on the traits 
that are in the aggregate genotype or on the animal that is being evaluated; observations can be 
on any trait and from the animal itself or its relatives. 
 
The problem is then to estimate the selection index weights, bi, such that selection of individuals 
on their selection index value, I, maximizes response in the aggregate genotype, H. 
Equivalently, we want to find bi such that the correlation between I and H is maximized, or that 
the variance of prediction errors (Var(H-I)) is minimized.  
 
With family selection indexes, the problem is to combine information from different types of 
relatives to provide the most accurate estimate of the additive genetic value of a given trait (g) 
for a given individual.  In this case, the aggregate genotype is given by H = g and, thus v = [1]. 
In this case the selection index is equal to the EBV for the trait evaluated: 

I  =
∧

g = b1x1 + b2x2 + … +  bmxm    (4.29) 
 
Similar to an economic index, a family index can include information on the animal itself and its 
relatives for the trait being evaluated, as well as records on other traits. Thus, the derivations that 
follow for an economic index also apply to family indexes by setting H = g and v = [1]. 
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4.4.1.1 Derivation of index coefficients 
 
We wish to define I such that selection of animals on I maximizes response in H.  From standard 
regression theory (see also Chapter 3) expected response (genetic superiority) of selected 
individuals in H, SH, is given by 

SH = bH.I (I - I )      (4.30) 
 
where b is the regression of aggregate genotype on index values, I is the index value of the 
selected animal or group of animals, and I  is the mean index value of all selection candidates.  
Since I - I  can be written as iσI, where i is the intensity of selection (see Chapter 3), 

SH = bHI iσI  = 
2
I

HI

σ
σ iσI = iσHI /σI    (4.31) 

Thus for any given intensity of selection, i, response in H is maximized when σHI/σI  is 
maximized. 
 
Apart from maximizing response in H to selection on I, it would also be useful if the index value, 
I, was an unbiased predictor of the aggregate genotypic value H.  This means that the true 
aggregate genotype of an individual is, on average, no more likely to be greater than its index 
value than it is to be less than its index value, or  

E(H -H ) = I - I       (4.32) 
 

Under the assumption of multivariate normality, this is achieved when the regression of H on I, 
bHI = 1.  Thus we wish to find the index coefficients b1, b2 … bn that maximize σHI /σI, subject to 
bHI = 1. 
 
Considering first the maximization of σHI /σI.  Let σg ki  be the genetic covariance between the kth 
observation in the index and the ith trait in the aggregate genotype.  Similarly, let σp ki  be the 
phenotypic covariance between the kth and lth observations in the selection index.  Recalling the 
definition of I given by equation (4.28), it follows that 

σ 2
I  = p11b σ21  + p22b σ22  + … + 2b1b2 p12σ  + 2b1b3 p13σ  … = 

kipl

m

l
k bb σ∑∑

== 1

m

1k

 (4.33) 

Similarly, the covariance between H and I, recalling the definitions given at (4.27) and (4.28), is 

  σHI = b1v1 g11σ  + b1v2 g12σ + … + bmvnσg mn   = ∑∑
==

m

l
kb

1

m

1k

viσg ki    (4.34) 

If we write the term to be maximized as,    M = σHI /σI 
 
then    log M = log σHI - log σI 

 
or    log M = log σHI - ½ log σ 2

I  
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and substituting from (4.33) and (4.34): 
 

log M = log(∑∑bkviσg ki ) - ½log (∑∑bkblσp ki )  (4.35) 
 
Since M will be maximal when logM is maximal, we can maximize M by differentiating logM 
with respect to each of the b in turn and setting each partial differential to zero:  

kb
M

 
 log 

δ
δ  = 0  for k = 1 to m.   

From standard differential algebra, with logM defined at (4.35), it follows that 

    
kb
M

 
 log 

δ
δ = 

HI

g

n

i
i ki
v

σ

σ∑
=1  #  

2
1

 

I

p

m

l
l kl
b

σ

σ∑
=  

Hence, M is maximal when 
kikl g

n
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HI

2
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p

m

l
l vb σ

σ
σ

σ ∑∑
==

=
1i

   
1

     (4.36) 

But from standard regression theory:  
HIHI

I

b
1  

2

=
σ
σ  

and if the index I is to give unbiased estimates of the aggregate genotype H, we recall that bHI 
must equal 1.  Hence (4.36) becomes,  

kikl gp

m

l
lb σσ ∑∑

==

=
n

1i
i

1
v         (4.37) 

Since there are m observations in the index, there are m equations of the general form of (4.37), 

i.e.    
il g

n

1i
ip
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If we write these equations in their expanded form, i.e. 
 

b1
1.1p

σ   + b2
2.1p

σ   …   +  bm
mp .1

σ  =  v1
1.1g

σ   + v2
2.1g

σ  …  + vn
ng .1

σ  
b1

1.2p
σ   + b2

2.2p
σ   …   +  bm

mp .2
σ    =  v1

1.2g
σ   + v2

2.2g
σ  …  + vn

ng .2
σ  

      .   .       .   .       .   . 
b1

1.mp
σ   + b2

2.mp
σ   …  +  bm

mmp .
σ    =  v1

1.mg
σ   + v2

2.mg
σ  … + vn

nmg .
σ  

 

it is clear that they can be written in matrix notation as: 
 

Pb = Gv       (4.38) 
 

where: b = column vector of m selection index coefficients 
P = m x m matrix of phenotypic covariances among the observations in the index, 
G = m x n matrix of genetic covariances among the m index observations and the n traits 

in the aggregate genotype 
v = column vector of economic weights of the n traits in the aggregate genotype. 

 

Recalling that pre-multiplying a matrix by itself yields an identity matrix, i.e. that, P-1 P = I , the 
solution to obtaining b can be obtained by pre-multiplying both sides of (4.38) by P-1 to obtain, 
 

b = P-1Gv       (4.39) 
 
These are the so-called selection index equations that must be solved to find the optimal index 
weights. 
 
 
4.4.1.2 Alternative derivation using matrix notation 
 
The object is to minimize the variance of the difference between the predicted value, I, and the 
true value, H, i.e. minimize Var(H-I).  Thus we wish to minimize 
 

E(H - I)2   = E[I - H)' (I - H)] 

      = E[I - H)' (I - H)'] 

      = E[(b'x - v'g)(x'b - g'v)] 

      = E[(b'xx'b - b'xg'v - v'gx'b + v'gg'v] 
 
where x = column vector of observations and g = column vector of genetic values.  Each of the 
terms in the above equality can be found as: 
 

E(b'xx'b)  = b'E(xx')b  = b'Pb, 

E(b'xg'v)  = b'E(xg')v  = b'Gv, 

E(v'gx'b)  =  v'G'b       = b'Gv  since v'G'b is a scalar 

and   E(v'gg'v)  = v'E(gg')v   = v'Cv 
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Therefore, to minimize M = b'Pb - 2b'Gv + v'Cv 
 

we must find the values which correspond to  
bδ

δM  = 0 = 2Pb - 2Gv + 0 

Therefore   Pb = Gv 
 

Hence,    b = P-1Gv  which is identical to equation (4.39). 
 
 
4.4.1.2 Accuracy of the index 
 
The accuracy of the selection index can be computed as the correlation between I and H: 

rHI =
HI

HI

σσ
σ         (4.40) 

The variance of the index, σ 2
I , is easily found as 
σ 2
I  = Var(b1x1 + b2x2 … bmxm) 

          =  22
1 1p
b σ  + 2

2b
2
p2σ + …+ 2b1b2 p12σ  + 2b1b3 p13σ  

 
or in matrix notation:  σ 2

I  = Var(b’x) = b’ Var(x)b = b'Pb    (4.41) 
 
Following the same argument as for σ 2

I , σ 2
H  Var(v’g) = v’ Var(g)v =  = v'Cv  (4.42) 

 
where C is an n x n matrix of genetic covariances among the traits in the aggregate genotype.   
 
Similarly, it follows that        σHI =  Cov(b’x, v’g) = b’ Cov(x,g)v = b'Gv   (4.43) 
 

Hence,    rHI = 
HI

HI

σσ
σ  = 

Cvv' Pbb'
Gvb'     (4.44) 

 
Note that because the index was constrained such that bHI = 1 and bHI = σHI/σ 2

I , thus σHI = σ 2
I   

 
and from equations (4.41) and (4.43),  b'Pb = b'Gv     (4.45) 
 
Thus, for the optimal index, equation (4.44) for accuracy simplifies to: 
 

rHI =
H

I

σ
σ  = 

Cvv'
Pbb' =  

Cvv'
Gvb'    (4.46) 

 
Note, however, that equations (4.45) and (4.46) only hold for the optimal index, whereas 
equation (4.44) holds for any arbitrary index. 
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4.4.2 Family Selection Indexes 
 
With family selection indexes, the problem is to combine information from different types of 
relatives to provide the most accurate estimate of the additive genetic value of a given trait (g) 
for a given individual.  As indicated previously, in this case H = g,  v = [1], and σ 2

H  =σ 2
g . This 

simplifies derivations to: 
from equation (4.39)   b = P-1G      (4.47) 
 

and from equation (4.46)  rHI = ggr ˆ, = 
2
g

Gb'
σ

     (4.48) 

 
4.4.2.1 Examples of family selection indexes 
 
Single source of information 
 
The simplest form of a family index are the cases discussed in sections 4.2 and 4.3, where only a 
single source of observations is used, i.e. a single record or the mean of m records of the same 
type. The simplest case is a single record of the phenotype of the individual itself.  In this case, 

the selection index is  I =
∧

g = b1x1 and the aggregate genotype is    H = g 
 
where x1 and g are both expressed as deviations from their population mean.   

In this case,   P = σ 2
x   and  G = xgσ  

Hence,    b = b= P-1G = (σ 2
x )-1 xgσ = xgσ /σ 2

x  

The accuracy of selection, given by (4.48), is rHI = ggr ˆ, = 
2
g

Gb'
σ

= 
C
Gb  = 

gx

xg

σσ

σ
  

These results are equivalent to those obtained in section 4.4.2. 
 

More than one observation in the index 
 
For the previous example, when there was only one source of information in the index, algebraic 
expectations for b and rHI were derived directly in terms of basic population parameters.  
Appropriate formulae can be derived for a wide range of situations, including some situations 
with two or more sources for a single trait.  A few more examples are given in Table 4.1, and a 
more extensive list is given by Van Vleck, 1993. Once there is more than one source of 
information in the index, it is often more useful to derive the expectations for the elements of P 
and G and then solve for b, bHI, etc. using a computer package for matrix programming, rather 
than attempting to derive an algebraic solution directly. 
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Table 4.1 Selection index coefficients, b, and accuracies, rHI, for some common sources 
of information in family indexes to predict additive genetic value for a single trait.   

 

Information Source 
 

b rHI = ggr ˆ,  

Single record on 
individual 

 
h2 

2h  
 

 
m records on individual 1)1(

2

+− tm
mh

 
1)1(

2

+− tm
mh

 

 
Single record on one 

parent 
 

½ h2 ½ 2h  
 

 
m records on one parent 

mh2

2((m−1)t +1)
 ½

mh2

((m−1)t +1)
 

 
Single record on both 

parents 
 

½ h2, ½ h2 0.71 2h  
 

 
m records on both parents 

) 1)1((2

2

+− tm
mh
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 )1)1((2

2

+− tm
mh

 0.71 
)1)1((

2

+− tm
mh

 

 
Mean of n half-sib 

progeny with one record )4)1((
2

2

2

+− hn
nh

 
4)1( 2

2

+− hn
nh

 

 
 

4.4.2.2 General equations to derive elements of selection index matrices  
 
This section describes general equations that can be used to derive elements of the P, G, and C 
matrices that are needed for selection index calculations. Possible sources of information in the 
index are individual records and the mean of m records on a group of individuals or of m own 
records. Records on different traits can be included in the index and the aggregate genotype can 
consist of a single trait or of multiple traits. 
 
It must be noted that these equations assume no selection or inbreeding. The impact of selection 
and inbreeding on index derivations will be discussed in a later chapter. 
 
Notation: 

m   = number of records within a group 
c2  = common environment component within a group of individuals that contribute to a mean 
σpk  = phenotypic standard deviation of trait k 
σgk  = additive genetic standard deviation of trait k 
rpkl  = phenotypic correlation between traits k and l 
rgkl  = genetic correlation between traits k and l 
a   = additive genetic relationship within a group 
aij   = additive genetic relationship between individual(s) in groups i and j 
ahj = additive genetic relationship between the individual in the breeding goal (h) and 

individuals in group j 
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P-matrix 
diagonal:  
• Variance of m records of a given type 

        2)1(1
pm

tm
σ

−+    (= 2
pσ  for  m=1)         (4.49) 

                        with  t = repeatability for repeated records 
                           t = ah2+ c2  for multiple individuals 
 
off-diagonal:  
• Covariance between mean of m records on different traits (k and l) for the same group: 

        
m

ramr
lkkllkkl gggppp σσσσ )1( −+
  ( = rpklσpkσpl  for m=1)   (4.50) 

 
• Covariance between (mean of) record(s) on same trait k for different groups (i and j): 
        (aij h 2

k
 + c 2

k )σ 2
kp
                    (4.51) 

 
• Between records on different traits (k and l) in different groups (i and j): 
        

lkkl gggijra σσ                       (4.52) 
 
G-matrix 
• Covariance of the genetic value for trait k on the breeding goal animal (h) with records on trait l 

for group j 
        

lkkl ggghjra σσ    (= 2
kghja σ if k=l)          (4.53) 

 
C-matrix 
Diagonal: 
• Variance of genetic value for trait k 
       2

kg
σ                            (4.54) 

Off-diagonal: 
• Covariance between genetic values for traits k and l on breeding goal animal 
        

lkkl gggr σσ                        (4.55) 
 
 
4.4.2.2.1 Example Index of individual record and full-sib mean performance 
 
Imagine a situation where we have an observation on the individual's performance plus the mean 
performance of that individual's m full sibs, and we wish to predict the individual's breeding 
value.   The index will then take the form, 

I =
∧

g = b1x1 + b2x2 

 
where x1 is the individual's phenotype and x2 is the full-sib mean phenotype, both expressed as 
deviations from the population mean.  
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Then P and G will take the form, 
 

P = 
!
!
"
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!
"
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$
$
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&
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2
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σ

σ
     (4.56) 

 
Elements of P and G can be derived using the equations developed in the previous section. As an 
example, consider a selection index based on individual phenotype and the mean performance of 
5 full sibs for animals in a population recorded for growth rate with a heritability of 0.5. We will 
assume there is no common environmental component.  

Then:    P = 
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and:    G = 
!
!
"
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$
$
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Selection index coefficients are given by   b = P-1G which, since σ 2

p  cancels out, gives 

b =  !
"

#

25.
1

   
1
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"
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$
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"

#
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Hence, the selection index would be 

I =
∧

g = 0.4074 x1 + 0.3704 x2 

 
The accuracy of this index or EBV is given by 

rHI = ggr ˆ, = 
2
g

Gb'
σ

 =
2
p

2
'

 5.0
.25
.5

   
3704.
4074.

σ

σ p"
#

$
%
&

'
"
#

$
%
&

'

= 0.77  (4.59) 

 
We can compare this accuracy with the accuracy of 0.707 for phenotypic selection on the same 
trait as shown in Section 2.8.1.  By adding information on the mean performance of 5 full sibs, 

the accuracy of evaluation is increased from 0.71 to 0.77, i.e. by 8.9%.  And, since S = i ggr ˆ, σg , 

and i and σg are not affected by the addition of extra information to the index, expected response 
will also increase by 8.9%. 
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4.5 Selection Index and Animal Model BLUP   
 
An assumption in the use of selection indexes to estimate breeding values is either that there are 
no fixed effects in the data used, or that fixed effects are known without error.  This may be true 
in some situations.  An example are some forms of selection in egg-laying poultry where all 
birds are hatched in one or two very large groups and reared and recorded together in single 
locations.  But in most cases, fixed effects are important and not known without error.  For 
example, with pigs, different litters are born at different times of the year, often in several 
different locations.  In progeny testing schemes in dairy cattle, cows are born continuously, begin 
milking at different times of year and in a very large number of different herds. 
 
For this reason (and others) genetic evaluation in practice is often based on methods of Best 
Linear Unbiased Prediction, BLUP, which is a linear mixed model methodology which 
simultaneously estimates random genetic effects while accounting for fixed effects in the data in 
an optimum way.  Relationships among animals can be included in the model.  A sire model 
would account for relationships through the sire, i.e. half-sibships.  A sire and dam model 
accounts for relationships through both the sire and the dam, i.e. full and half-sibships.  An 
animal model accounts for all relationships among all animals in the data set.  A description of 
the theory and application of BLUP, and animal model BLUP in particular, can be found in 
Schmidt (1988), Mrode (1996), and Lynch and Walsh (1998). 
 
When relationships are included in a BLUP procedure, the method is equivalent to a selection 
index with the additional ability to efficiently estimate and correct the data for fixed effects.  In 
the absence of fixed effects, BLUP with relationships is identical to a selection index.  For 
example, a BLUP sire and dam model without records on the sire and dam would be the same as 
a selection index based on individual, full sib and half-sib records.  An animal model BLUP 
would be equivalent to a selection index based on all related individuals, including ancestors, 
with records. 
 
These equivalences are important for the design of breeding programs, because it means that in 
many situations, many aspects of selection programs with BLUP evaluation can be effectively 
studied with simulations based on equivalent selection indexes.  There are two approaches to 
modeling Animal model BLUP EBV using selection index: 
 
1) Develop a selection index based only on those relatives providing the greatest amount of 

information, rather than all possible relatives as in the animal model.  For example, when 
records on parents, full and half sibs, and progeny are accounted for, information on more 
distant relatives may only provide a trivial increase in accuracy of selection. 

 
2) Develop a selection index that includes parental EBV as sources of information, along with 

records on the individual itself, collateral relatives, and progeny, if available. In such an 
index, the parental EBV account for all ancestral information. 

 
Development of the first type of index follows from the previous sections. We will describe the 
development of the second type of index in more detail in the following. 
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Consider the following information sources to estimate the BV of individual i for a hierarchical 
breeding design in which each sire is mated to m dams and each dam has n progeny (Figure 4.1): 
• xi    = the animal’s own record,  
• xfs  = the average of single records on the individual’s n-1 full sibs 
• xhs = the average of single records on the individual’s (m-1)n half sibs 

• sĝ = the EBV of the individual’s sire, excluding xi, xfs, and xhs 

• dĝ = the EBV of the individual’s dam, excluding xi, xfs, and xhs 

• mĝ = the mean EBV of the (m-1) mates of the sire that produced the individual’s half sibs 
 

 
 
Based on this information, the selection index to estimate the individual’s BV can be formulated 

as:  Ii = iĝ = b1 xi + b2 xfs + b3 xhs + b4 sĝ + b5 dĝ + b6 mĝ     (4.60) 
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As before, index weights can be derived as: GPb -1  =  

And accuracy as:    2
ˆ /  ggg,r σPbb'=  

Because elements of the P and G matrices depend on accuracy of EBV of the sire and dam, 
which in turn depend on the EBV of their parents, iteration must be used to derive the final index 
and its accuracy. This can be done by using some starting value for accuracy of parental EBV, 
e.g. rs = rd = h, deriving the index and its accuracy, and then using the resulting accuracy as the 
new accuracy for rs and rd, resolving the index, etc.. This process of iteration is akin to building 
pedigree information; in each iteration, an additional ancestral generation with data is added, 
which increases accuracy but at a diminishing rate, until accuracy asymptotes (see example). 
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EBVi = b’ [xi , xfs , xhs , gdam , gsire , gmates ]’

b = P-1G    rg,g  = Vb’Pb/σg
           

Iterative Procedure to Compute Accuracy of EBV
Building-up pedigree information

1)   Set accuracy of  gsire=gdam=gmates= h   (own record)

2)   Set up index (P, G) and derive accuracy    rg,g =Vb’Pb/σg

3)   Set accuracy of gsire=gdam=gmates equal to rg,g
                                     

i

4)   Repeat steps 2 and 3 until accuracy converges

Needs adaptation if selection after progeny

^^^

^^^

^^^

^

^

^

 
 

 
 

 

rs=rd=rm= 0.6888 P = x i x fs x hs g sire g dam g mates
from previous iteration x i 100.00 12.50 6.25 5.93 5.93 0.00

x fs 12.50 22.22 6.25 5.93 5.93 0.00

x hs 6.25 6.25 7.04 5.93 0.00 0.31

g sire 5.93 5.93 5.93 11.86 0.00 0.00

g dam 5.93 5.93 0.00 0.00 11.86 0.00

g mates 0.00 0.00 0.31 0.00 0.00 0.62

G = 25.00 12.50 6.25 5.93 5.93 0.00

Iteration 1 σp
2= 100      n= 10 n offspring per dam --> n-1 full sibs of individual

h2= 0.25      m= 20 m dams per sire with n offspring each
C

2= 0   ---> (m-1)n halfsibs consisting of (m-1) fullsib families
STARTING VALUE σg

2= 25
FOR ACCURACY OF σe

2= 75
PARENTAL EBV
rs=rd=rm= 0.5000 P = x i x fs x hs g sire g dam g mates
(start with r=h) x i 100.00 12.50 6.25 3.13 3.13 0.00

x fs 12.50 22.22 6.25 3.13 3.13 0.00

x hs 6.25 6.25 7.04 3.13 0.00 0.16

g sire 3.13 3.13 3.13 6.25 0.00 0.00

g dam 3.13 3.13 0.00 0.00 6.25 0.00

g mates 0.00 0.00 0.16 0.00 0.00 0.33

G = 25.00 12.50 6.25 3.13 3.13 0.00 Acc =

Ex
am

pl
e

b=P-1G= 0.175
0.291
0.464
0.035
0.267

-0.232

0.6888

Iteration 2

b=P-1G= 0.169
0.234
0.500
0.048
0.298

-0.250

Acc = 0.7024

 
 

Example
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In the previous selection indexes were used to provide genetic evaluations for a single trait based 
on records of that trait on the individual and/or other relatives.  This is known as single-trait 
evaluation.  It should be clear from selection index theory, that information on other traits could 
also be included in the index, to give a multi-trait evaluation (see Villanueva et al. 1993). 
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Chapter 5 
 
Selection-Induced Gametic Phase Disequilibrium 

The Bulmer Effect 
 
In the previous chapters, genetic variance was assumed constant over generations. Selection, 
however, has an impact not only on the mean of the population but also on genetic variance. 
Changes in genetic variance affect the amount of change that can be made in future generations. 
 
The objective of this section is to model the effect of selection on genetic variance and to 
incorporate its effects in derivation of selection indexes and response to selection. As in the 
previous chapters, the basis of these models will be the infinitesimal genetic model, in which the 
trait is assumed to be affected by a large number of unlinked loci with small effect. 
 
 
5.1  Effects of Selection on Genetic Variance 
 
Pearson (1903), in his discussions on conditional variances early this century, noted that 
truncating a distribution affected both the mean and variance of the population.  Anecdotally, 
founding animal breeders such as Lush, Falconer, and Henderson are said to have recognized 
that this could have implications for animal breeding since truncation selection could reduce 
genetic variance among parents from that observed before selection.  Bulmer (1971, 1976, 1981) 
was the first to publish an examination of this effect of selection on genetic variance, and, 
consequently, the effect is often referred to as the “Bulmer Effect” or the effect of linkage 
disequilibrium.  A more appropriate term is Falconer's “gametic phase disequilibrium”  (See 
Falconer and Mackay, 1996, for an explanation of this term.) 
 
To explain gametic phase disequilibrium, we will look at a situation where two unlinked genes 
affect a trait in an additive manner and each gene has a large number of alleles and both genes 
make the same contribution to genetic variance in the trait. Animals from a previously unselected 
population are selected on the sum of the genetic effects at both loci as illustrated in Figure 5.1. 
 

Selected individuals

Line representing
minimum requirement

for selection

Locus 1

Locus 2

All individuals
prior to selection

Figure 5.1. Selection on the sum of two unlinked loci
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When an animal has a high value at locus 1, it has a high chance of being selected, irrespective 
of the value at locus 2. Similarly, an animal with a high value at locus 2 will have a high value of 
being selected irrespective of the value at locus 1.  However, animals with a moderately high 
value at locus 1 will only be selected when the value at locus 2 is also at least moderately high. 
As a consequence of this selection, effects at the two loci are negatively correlated in the selected 
individuals. In other words, the effects at the two loci in the selected individuals are no longer 
uncorrelated, i.e. selection has introduced gametic phase disequilibrium.   

 
Genetic variance in the trait is equal to variance of the sum of the gene effects at the two loci:  

   2
gσ = 2

1gσ + 2
2gσ +

21ggσ        (5.1) 
where 2

igσ  is the variance due to effects at locus i and 
21ggσ  is the covariance between the effects 

at the two loci. Prior to selection, 
21ggσ is equal to zero, which reflects that the genes are in 

(linkage) equilibrium. Selection introduced a negative covariance and, as can be seen from 
equation (5.1), it is this negative covariance or disequilibrium between the two loci that reduces 
the genetic variance in the group of selected individuals.   
 
It is important to recall that in the infinitesimal genetic model, individual genes are not 
recognized. The reduction in variance among selected individuals can also be derived from 
normal distribution theory, an approach that we will follow from here on. Nevertheless, it is 
important to keep in mind that the underlying mechanism that creates the reduction in genetic 
variance is the negative disequilibrium that is created between loci. 
 
The effects of selection on genetic variance will first be described for a situation where animals 
are selected on their phenotype; a situation which is often referred to as “mass selection”. The 
distribution of phenotypes prior to selection will have a standard deviation of σp, but as is clear 
from Figure 5.2, the standard deviation will be considerably less than among the proportion, p, of 
animals that are selected for breeding. 
 

Figure 5.2     Mass Selection

0

p%

   i σσσσp

z

   x σσσσp

σσσσp

2*
pσ  = (1 - k) 2
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The group of selected animals represents one tail of the distribution of the phenotypic 
distribution. If 2

pσ  is the phenotypic variance in the population before selection, k the factor by 
which the variance is reduced, and a subscript * is used to denote parameters after selection, the 
variance, 2*

pσ , in the selected individuals is: 
2*

pσ  = (1 - k) 2
pσ       (5.2) 

Factor k depends on intensity of selection (Pearson, 1903). When selection is by truncation of a 
normal distribution, then: 

k = i(i - x)       (5.3) 
 
where i is the selection intensity and x is the standardized truncation point to the normal 
distribution corresponding to i, expressed in standard deviation units. 
 
For genetic improvement, the question is what effect does selection on phenotype have on 
genetic variance of the trait.  Again, from standard normal distribution theory it follows that with 
truncation selection on trait y the variance of a correlated trait x in the selected group, 2*

xσ , is 

given by    2*
xσ  = (1 - 2

xyrk ) 2
xσ       (5.4) 

where xyr  is the correlation between traits x and y. 
 
Covariances between variables are similarly affected by selection.  For example, the genetic 
covariance between w and x after selection on y is 

*
wxσ  =  wxσ - k 2

y

xywy

σ

σσ
     (5.5) 

Note that equation (5.4) for genetic variance is just a special case of (5.5) when w = x. 
 
For mass selection, genetic variance among the selected individuals can be deduced as follows: 

2*
gσ  = (1 - 2

gyrk ) 2
gσ       (5.6) 

            = (1 - 2hk ) 2
gσ  

where 2
gσ  is the genetic variance before selection.  The correlation between additive genetic 

value g and phenotypic value, y, is h, the square of the heritability. The phenotypic variance is 
reduced by a factor k and the proportion h2 of 2

gσ  is reduced by that same factor. 
 
The formulae to calculate the reduction in genetic variance will now be generalized to a situation 

where selection is based on estimated breeding value ĝ (Figure 5.3).  Genetic variance among 
selected individuals can be derived using the correlation between the true genetic value g and the 

EBV, ĝ , which is equal to ggr ˆ, .  When selection is on ĝ , the variance in ĝ among the 

selected animals is 2*
ĝσ  = (1 - k) 2

ĝσ  and from (5.4) it follows that the genetic variance among 

the selected animals is  2*
gσ =  (1 - 2

ˆggrk ) 2
gσ       (5.7) 
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Figure 5.3     EBV Selection
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Referring back to Chapter 2, genetic variance of a population prior to selection can be partitioned 
into the parental and Mendelian sampling components as: 

2
gσ  = ¼ 2

sg
σ  + ¼ 2

dg
σ  + 2

mg
σ      (5.8) 

This can now be modified to give genetic variance after selection among sires and dams.  Using 
(5.6), genetic variance in the selected sires and dams can be calculated, where 2*

sg
σ  is the genetic 

variance among the selected sires and 2*
dg

σ  is the genetic variance among the selected dams.  

This leads to:     2
gσ  = ¼ 2*

sg
σ  + ¼ 2*

dg
σ  + 2

mg
σ      (5.9) 

 
This can be generalized to predict the genetic variance in generation t+1 from the variance 
among the parents selected in generation t  

2
)1( +tg

σ  = ¼ 2*
)( tsg

σ + ¼ 2*
)( tdg

σ  + 2
mg

σ     (5.10) 
Note that only the parental contributions to variation are affected by selection.  The variance 
generated by Mendelian sampling, 2

mg
σ , is unaffected by selection and is equal to  ½ 2

)(og
σ  where 

2
)(og

σ  is the genetic variance in the unselected and non-inbred base population. The intuitive 
reasoning for this is that Mendelian sampling variance represents variation created by sampling 
one of a pair of parental alleles at each locus. This sampling process is unaffected by selection. 
Mendelian sampling variance is, however, affected by inbreeding, which will be discussed later. 
 
Based on this, the following general recursive equation can be developed to predict genetic 
variance among progeny: 

2
)1( +tg

σ = ¼(1- 2
)( tss rk ) 2

)( tgσ + ¼(1- 2
)( tdd rk ) 2

)( tgσ  + ½ 2
)(og

σ  (5.11) 
 
where ks and kd are based on selection intensities among males and females, and rs(t) and rd(t) are 
the respective accuracies of selection in generation t. 
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5.2  Prediction of Genetic Variance and Response for Mass Selection 
 
In Table 5.1, the genetic variance is given for different (4) generations of mass selection in males 
and females. Generation 0 is assumed to be unselected, h2=½, and 2

eσ = 2
)(ogσ =100.  Truncation 

selection is used in both males and females and 5% of animals with highest phenotype are 
selected. In that case: i = 2.063 and x = 1.645, which based on equation (5.3) results in k = i(i-x) 
= 2.063(2.063-1.645) = 0.862.  Using equation (5.6), genetic variance among selected parents 
(sires and dams) is (1-0.862x½)100 = 56.9. 

 
From equation (5.11) it follows that genetic variance in generation 1 is equal to ¼x56.9 + ¼x56.9 
+ ½x50 = 78.45.  Selection reduced genetic variance to 78.45. In the base population, 2

eσ  was 
100 and the level of this variance is not affected by selection. Heritability in generation 1 is now 
78.45/(100+78.45)=0.44.  With this new level of h2, variance among parents selected in 
generation 1 can be calculated using (5.6) and variance in generation 2 using (5.11).   
 
 
Table 5.1 Effect of truncation selection with p=5% in males and females (i=2.063, x=1.645) 
during 5 generations (t = 0 to 4) on additive genetic variance 2

)( tgσ and average additive genetic 

merit of individuals ( )(tg ). Heritability in generation 0 was ½ (no inbreeding). 
 

t 2
)( tgσ  

 

2
)( t

h  

 

)(tg  
 

)(tg - )1( −tg  
0 100 0.50   50.0 0 
1   78 0.43   64.6 14.6 
2   74 0.43   76.7 12.1 
3   74 0.42   88.3 11.6 
4   73 0.42   99.8 11.5 
5   73 0.42 111.3 11.5 

Selection stopped (random selection from here on) 
6   87 0.47 111.3 0 
7   93 0.48 111.3 0 
8   97 0.49 111.3 0 
9   98 0.49 111.3 0 

10   99 0.49 111.3 0 
 
 
From Table 5.1 it can be seen that genetic variance reaches an equilibrium after three generations 
of selection.  Genetic variance is equal to 74 and does not decrease further although selection is 
continued. This is referred to as the asymptotic genetic variance. When this is reached, the 
amount of gametic phase disequilibrium created by selection of individuals is equal to the 
amount of gametic phase disequilibrium which is broken down during meiosis (Mendelian 
sampling). When selection is stopped after four generations, no new gametic phase 
disequilibrium is created in the parents and the variance reduction is halved each generation as a 
result of Mendelian sampling.  After 10 generations, genetic variance is back to its original level. 
  



 66 

Response to selection from one generation to the next can be predicted as derived in chapter 1, 
but using parameters that apply to the parental generation: 
   )1( +tg = )(tg + ih(t)σg(t)       (5.12) 
The mean of the population changes as a result of selection.  After five generations of selection 
the population level has increased by 111.3 units (Table 5.10. The greatest genetic gain was 
realized in generation 1 because this was the generation with the highest h2 and genetic variance. 
Response in subsequent generations is reduced both because of a reduction in genetic variance, 
as well as a result of a reduction in accuracy of selection. The population remains at the same 
level after selection has stopped.   
 
Genetic variance in the population is reduced by 26% after one round of selection but this is the 
result of a much larger, i.e. 52%, reduction in variance among selected sires and dams. This 
results from the fact that variance due to Mendelian sampling is not affected by selection and 
consequently remains 50. Another way to look at this is to consider variation within and between 
full sib families. Without selection, between and within family variances are both equal to 50.  
With selection, variation between full sib families is equal to ¼ 2*

)( tsg
σ + ¼ 2*

)( tdg
σ , while the within 

full sib family genetic variance is equal to 2
mg

σ = ½ 2
)(og

σ .  In generation 1, the between full-sib 
genetic variance is equal to ¼x56.9+¼x56.9=28.45, while the within full-sib variance remains 
equal to 50. This demonstrates that selection has changed the ratio of within and between family 
genetic variance. An implication of this is that using a reduced heritability in deriving selection 
index weights is not the correct way to deal with changes in genetic variance resulting from 
selection because this assumes that all components of genetic variance are affected in the same 
way, which is not true, as we have seen in equation (5.11).  Mass selection is a special case in 
which we only use the observations on the individual and forms an exception to this rule. 
 
 
5.2.1  Asymptotic Genetic Variance and Response to Selection   
 
The previous enables recursive prediction of changes in variance and response to selection. Both 
variance and response reach steady state or asymptotic values after a number of generations. For 
the case of mass selection (and BLUP selection as we will see later), these steady state 
parameters can also be derived directly, as will be demonstrated below.  
 
Starting with recursive equation (5.11):  2

)1( +tg
σ = ¼(1- 2

)( tss rk ) 2
)( tgσ + ¼(1- 2

)( tdd rk ) 2
)( tgσ  + ½ 2

)(og
σ , 

steady state parameters (denoted by subscript (L)) can be derived by setting 2
)(Lgσ = 2

)1( +tg
σ = 2

)( tgσ , 

)( Ls
r =

)( ts
r , and 

)( Ldr =
)( td

r , which results in the following steady-state equation: 
2

)(Lgσ = ¼(1- 2
)(Lss rk ) 2

)(Lgσ + ¼(1- 2
)(Ldd rk ) 2

)(Lgσ  + ½ 2
)(og

σ  (5.12) 
This equation can be solved if an equation can be developed that expresses accuracy of selection 

at the limit, 
)( Ls

r and 
)( Ldr , in terms of 2

)(Lgσ and base population parameters. This is possible for 

mass selection and, as will be shown later, also for selection on BLUP EBV but not in general 

for selection on other types of selection indexes. 
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For mass selection, 
)( ts

r = 
)(td

r = h(t), and assuming for simplicity equal selected fractions in both 
sexes, thus ks=kd=k, equation (5.11) simplifies to the following the recursive equation: 
       2

)1( +tg
σ = ½(1- 2

)( t
hk ) 2

)( tgσ  + ½ 2
)(og

σ     (5.13) 
 
and at the limit, from (5.12): 2

)(Lgσ = ½(1- 2
)( L

hk ) 2
)(Lgσ + ½ 2

)(og
σ     (5.14) 

 
with     2

)( L
h  = 2

)(Lgσ /( 2
)(Lgσ + 2

eσ )     (5.15) 

Using     2
eσ = 2

0

2
)0(1

h
h− 2

)(og
σ       (5.16) 

steady state heritability can be solved in terms of the base population heritability as: 
 

)1(2
)1(411

)1(1 2
)0(

2
)0(

2
)0(

2
)(

2
)0(

2
)0(2

)( hk

hkh

khh
h

h
L

L −

−++−
=

−+
=    (5.17) 

 
Substituting into equation (5.14) gives the following expression for the steady state genetic 
variance in terms of base population parameters: 

2
)(Lgσ =

)1(4121

)1(2
2

)0(
2

)0(
2

)0(

2
)0(

2
)0(

hkhh

hg

−++−

−σ
     (5.18) 

An expression for the response to mass selection in the limit relative to response in the initial 

generation is: 

R(L)/R(1) = 
)1( 2

)(
2

)0(

2
)(

)0(

)(

)0(

)(

L

L

g

gL

hkh
h

ih

ih
L

+
=

σ

σ
      (5.19) 
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5.3. Incorporating Gametic Phase Disequilibrium in the Selection Index 
 
Because selection affects genetic variances and co-variances, it also affects elements of the P and 
G matrices that are needed to derive the optimal weights for selection indexes. In this section we 
will illustrate how changes in genetic parameters can be incorporated in selection index 
derivations and will evaluate their impact on accuracy of the index. 
 
In general, because selection affects between and within-family variances differentially, 
derivation of elements of the P and G matrices must be based on the partitioning of the genetic 
value of individuals into parental and Mendelian sampling components: 
 
    goffspring = ½ gs + ½ gd + gm     (5.20) 
 
and, from equation (5.10), genetic variance in the offspring generation, t, must be partitioned 
into:    2

)( tgσ  = ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ  + 2
mgσ     (5.21) 

with from (5.7)  2*
)1( −tsgσ =  (1- 2

)1( −tss rk ) 2
)1( −tgσ  

2*
)1( −tdgσ = (1- 2

)1( −tdd rk ) 2
)1( −tgσ  

2
mgσ    =  ½ 2

)(ogσ  
 

As an example consider the situation where selection of sires and dams is on an index using 
phenotype of the individual and the mean performance of m full sibs. The index for selection in 
generation t will then take the form, 

)(ˆ tg = b1(t) x1 +  b2(t) x2      (5.22) 
where x1 is the individual's phenotype and x2 is the full-sib mean phenotype, both expressed as 
deviations from the population mean. Then the matrices needed to derive the index for 
generation t, P(t) and G(t) will take the form, 
 

P(t) = 






21

1

2

xx

x

σ

σ
   






2

2

21

x

xx

σ

σ
 ,       G(t) = 













gx

gx

2

1

σ

σ
    (5.23) 

 
Elements can be derived as follows: 
From equation (5.21):  2

1xσ  = ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ  + 2
mgσ + 2

eσ    (5.24) 
2

2xσ     = ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ  + ( 2
mgσ + 2

eσ )/m  (5.25) 

σx 1 x 2   =  ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ      (5.26) 

   σx1,g    = ¼ 2*
)1( −tsgσ   + ¼ 2*

)1( −tdgσ + 2
mgσ     (5.27) 

and    σx2,g    = ¼ 2*
)1( −tsgσ   + ¼ 2*

)1( −tdgσ      (5.28) 
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In generation 0, prior to selection, the above equations simplify to those derived in section 
4.4.2.2.1.  
 
For a trait with h2 = 0.5, 2

)0(gσ = 25, 2
)0(pσ = 50, and m=5 full-sibs, we get the following: 

P(0) = 



5.12

50
   




20

5.12
  G(0) = 








5.12

25
  and         b(0) = P(0)

-1
G(0) = 








3704.
4074.

 

 

Accuracy is    r(0) = 2
(0)(0)

(0)gσ

G'b
 

 = 0.77 

 
When in generation 0 only the 5% of sires and dams with the highest EBV are used to produce 
offspring, k = 0.863 and 

2*
)1(sgσ = 2*

)1(dgσ = (1- 2
)0(

rk ) 2
)0(gσ = (1-0.863x0.77

2
)25 = 12.21 

and   2
)( tgσ  = ¼ 2*

)1( −tsgσ + ¼ 2*
)1( −tdgσ + 2

mgσ = 18.61 
 
Using these values to derive elements of the P and G matrices for t=1 we get: 

P(1) = 



11.6
61.43

   



61.13
11.6

 G(1) = 







11.6
61.18

  and         b(1) = P(1)
-1

G(1) = 







2746.
3883.

 

 

Accuracy is    r(1) = 2
(1)(1)

(1)gσ

G'b
 

 = 0.69 

 
Using the recursive equations, this accuracy can be used to predict response to selection from t=1 
to t=2 and to derive the genetic variance and selection in t=2. 
 
Note that, compared to generation 0, selection reduced the variance among sires and dams and, 
as a consequence, the relative importance of observations on full-sibs is lower for the index used 
for selection in t=1 and the relative importance of observations on the individual has increased.  
 
The reduced importance of full-sib information can also be illustrated by comparing accuracy of 
the index to the accuracy of selecting on own phenotype alone, which is equal to h(0) and h(1) for 
t=0 and t=1, respectively. Based on this, the efficiency of the index excluding information from 
the full-sibs is 0.71/0.77 = 0.92 and 0.65/0.69 = 0.95 before and after one round of selection. 
 
 
5.4 Incorporating Gametic Phase Disequilibrium in BLUP EBV      
 
The previous section described methods to incorporate the effect of selection on genetic variance 
components in derivation of selection indexes based on recursive equations. In principle, these 
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methods can also be applied to the selection indexes described in section 4.5, method 1, to 
approximate BLUP EBV. Examples are in Wray and Hill (1989) and Villaneuva et al. (1993).  
 
For BLUP EBV, however, an alternative method can be used to incorporate the Bulmer effect, 
which facilitates direct derivation of steady state parameters. This method is based on the second 
approach for approximating BLUP EBV described in section 4.5 and utilizes the important 
property of BLUP EBV that their prediction error variance (PEV) does not depend on selection, 
but only on the amount of information used, with information defined as the number and type of 
records that is available on the individual itself and its relatives. This was described by 
Henderson (1975), using the argument that PEV’s are based on the inverse of the coefficient 
matrix, which depends on the design matrices, the matrix of additive genetic relationships, and 

genetic parameters in the base population: 2
εσ = Var(εεεε) = Var( )ˆ g-g  = C22    (5.29) 

where ε ε ε ε , ĝ , and g are vectors of prediction errors, EBV, and BV, respectively, and C22 is the 
part of the inverse of the coefficient matrix of the mixed model equations that corresponds to 
animal breeding values. Elements of C22 do not depend on selection. Therefore, the PEV of a 
particular animal with a particular amount of information in an unselected population is the same 
as if that animal was in a selected population (but with selection accounted for through ancestor 
information). Thus, to get the PEV of an EBV, the mixed model equations can be set up ignoring 
the effect of selection on genetic variance and solved for. The same applies to approximations of 
BLUP EBV using the selection index methods described in section 4.5. Thus, the variance of 

prediction errors can be derived as:  2
)0(ε

σ = (1- 2
)0(

r ) 2
)(og

σ     (5.30) 

where the subscript 0 (t=0) refers to parameters derived for an unselected population, and 
)0(

r is 
the accuracy of the BLUP EBV, derived using an index that ignores the effect of selection, 
following section 4.5. 

Although selection doesn’t affect the PEV, and, therefore, remains equal to 2
)0(ε

σ , PEV can also 
be derived based on the accuracy and genetic variance in the selected population as: 

     2
)(tε

σ = (1- 2
)( t

r ) 2
)( tgσ      (5.31) 

Thus, using the property that PEV is unaffected by selection: 

     2
)(tε

σ = 2
)0(ε

σ  

     (1- 2
)( t

r ) 2
)( tgσ = (1- 2

)0(
r ) 2

)(og
σ  

 
which, solving for 2

)( t
r results in: 2

)( t
r  = 1-(1- 2

)0(
r ) 2

)(og
σ / 2

)( tgσ     (5.32) 
This equation expresses the accuracy of EBV in a selected population in terms of the accuracy of 
EBV in an unselected population and the ratio of genetic variance in the unselected and selected 
population. Equation (5.32) holds for any generation and for any group of individuals. 
 
Together with the recursive equation (5.11) for genetic variance: 
 

2
)1( +tg

σ = ¼(1- 2
)( tss rk ) 2

)( tgσ + ¼(1- 2
)( tdd rk ) 2

)( tgσ  + ½ 2
)(og

σ  
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equation (5.32) provides a recursive system to derive genetic variance, accuracy of selection, and 
response to selection, as illustrated in Table 5.2 for selection on BLUP EBV that are described in 
section 4.5, method 2. Note that it is assumed that full pedigree information is available in 
generation zero. 
  

 
Table 5.2. Recursive prediction of genetic variance, accuracy, and response with selection on 
BLUP EBV. Selected fractions are 0.2 and 0.5 for males and females, respectively, for a trait 
with heritability 0.25 and phenotypic variance 100. Selection is on BLUP EBV from a 
hierarchical mating structure with 20 mates per sire and 10 offspring per dam. Accuracy in 
generation zero is derived in section 4.5. 
t (is+id) 

2 
ks kd σg(0)

2 σg(t)
2 r(0) r(t)= g(t+1) = R(t) = σ∗gs(t)

2 = σ∗gd(t)
2 = σg(t+1)

2 = 

     from t-1    (1-(1-r(0)
2)σg(0)

2 

σg(t)
2 

g (t)  + 
1/2(is+id)r(t)σg(t) 

g (t+1)- g (t)  
(1-r(t)2ks)σg(t)

2 
 

(1-r(t)2kd)σg(t)
2 

1/2σ
∗
gs(t)

2+1/2σ
*

gd(t)
2 

+1/2σg(0)
2 

0 1.1 0.78 0.64 25 25.00 0.704 0.704 3.871 3.871 15.326 17.074 20.600 

1 1.1 0.78 0.64 25 20.60 0.704 0.623 6.979 3.108 14.363 15.490 19.963 

2 1.1 0.78 0.64 25 19.96 0.704 0.607 9.961 2.982 14.224 15.261 19.871 

3 1.1 0.78 0.64 25 19.87 0.704 0.604 12.924 2.963 14.204 15.228 19.858 

4 1.1 0.78 0.64 25 19.86 0.704 0.604 15.884 2.960 14.201 15.223 19.856 

5 1.1 0.78 0.64 25 19.86 0.704 0.604 18.843 2.960 14.200 15.223 19.856 
 

Table 5.2 shows that, similar to mass selection, the impact of the Bulmer effect reaches a steady 
state after 5 generations of selection. 
 
 
5.4.1  Asymptotic Genetic Variance and Response to Selection 
 
Equations (5.32) and (5.11) can also be used to directly derive steady state parameters, following 
Dekkers (1992). Assuming for simplicity equal selection in males and females, using equation 
(5.32), accuracy at the limit is:    

2
)( L

r  = 1 - (1- 2
)0(

r ) 2
)(ogσ / 2

)( Lgσ      (5.33) 
Simplifying equation (5.11) for equal selection among males and females, genetic variance at the 
limit is:    2

)( Lgσ = ½(1- 2
)( L

rk ) 2
)( Lgσ + ½ 2

)(ogσ     (5.34) 

Rearranging results in: 2
)( Lgσ = 2

)(ogσ /(1- 2
)( L

rk )     (5.35) 

and substituting equation (5.33) gives an equation that expresses genetic variance at the limit in 
terms of parameters for t=0: 2

)( Lgσ = [1+k(1- 2
)0(

r )] 2
)(ogσ /(1+k)    (5.36) 

 
Equations (5.36) and (5.33) can then be used to derive response at the limit as: 
     R(L) = i 

)( L
r

)( Lgσ  

Response at t=0 is:  R(0) = i 
)0(

r
)(ogσ   
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Therefore, response at the limit relative to response without accounting for the effect of selection 
on genetic variance under BLUP selection is equal to: 

R(L)/R(0) =  
)( L

r
)(Lgσ / 

)0(
r

)(og
σ    

which, using equations (5.36) and (5.33) simplifies to: 

    R(L)/R(0) = 
k+1

1       (5.37) 

Therefore, the reduction in response under BLUP selection depends only on selection intensity, 
and not on initial accuracy or heritability, as is the case for mass selection. 
 

Linkage Disequilibrium under BLUP Selection
Predicting Response to Selection

Effect of Linkage Disequilibrium Induced by Selection
on Response to Selection
(infinitesimal model, no inbreeding)

Selection

Genetic variance Variance of pedigree information

Accuracy of selection

Response to selection R = i rσσσσg

 
 

BLUP Selection - Example

          σσσσg,0rL = 1 - (1-r0)      = 0.09 = 0.69
          σσσσg,L

rL/r0  = 0.60 = 0.86

2

2
22

1+k(1-r0)σσσσg,L =      σσσσg,0 = 0.93 = 0.65
     1+k

σσσσg,L/σσσσa,0 = 0.93 = 0.65

2
22

       1
RL/R0 =     = 0.747 = 0.747

   V1+k

ps = pd = 0.2 i=1.4       k=0.79
σσσσg.0 = 1

r0
2 = 0.15      PEV=(1-.15)*1 = 0.85   r0

2 = 0.80      PEV = 0.85

22

2 2
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Reduction with BLUP selection > Reduction with Mass selection
  Is BLUP selection better than Mass selection at the limit?

(Ignore effect of Inbreeding) 
 Lower limit to BLUP accuracy: 1 progeny per parent
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Theoretical lower limit for asymptotic response
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 Comparison of asymptotic Response

to BLUP and Mass Selection
(Ignore effect of Inbreeding) 

 For BLUP accuracy: 2/p progeny per parent
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When selection intensities and initial selection accuracy’s are different for the two sexes, similar 
procedures can be used to derive the following results (Dekkers, 1992): 

R(L)/R(0) =

dsd
d

s
s

d

s
sd

d

s
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d
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 (5.38) 

When initial selection accuracy’s are equal for both sexes, this equation simplifies to: 

    R(L)/R(0) =
ds kk ++2

2      (5.39) 

 
 

 Comparison of asymptotic Response
to BLUP and Mass Selection

(Ignore effect of Inbreeding) 
 For BLUP accuracy: many progeny per parent
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Example Programs with Four Selection Paths

Breeding plan I II III IV
Pathway  pSS .05 .03 .03 .03

     pSD .20 .10 .10 .10
     pDS .05 .01 .01 .01
     pDD .90 .80 .80 .80

    rs .85 .85 .85 .85
    rd .65 .65 .50 .75
 σσσσSg,L/σσσσg,0 .736 .732 .773 .699
    σσσσDg,L/σσσσg,0 .774 .759 .783 .741
 rS,L/rS,0 .929 .927 .942 .914
 rD,L/rD,0 .775 .753 .408 .853
 RL/R0 .759 .743 .685 .752

2 2

2 2

Relative reductions in response to BLUP due to LD
range from 22 to 32% for most practical programs  

 
 
5.5 Selection Across Multiple Age Groups 
 
The recursive equations developed in the previous sections can be expanded to selection across 
multiple age groups. Following the notation and derivations of Chapter 2, the genetic mean in 
year t+1 can be predicted as: g (t+1) =  ½ *

)(tsg  + ½ *
)(tdg  

where g s(t) is the mean genetic value of sires selected at time t, which can be derived as a 
weighted average of genetic means of selected sires from each age group i at time t: 
    *

)(tsg  = 
sP

1 Σpsi wsi 
*

)(tsig  

with    *
)(tsig =

)(tsig + isi rsi(t) )( tgiσ  

and     *
)(tdg  = 

dP
1 Σpdi wdi 

*
)(tdig  

with    *
)(tdig = 

)(tdig + idirdi(t) )( tgiσ  

 
From equation (5.7), genetic variance among selected sires from age group i at time t is equal to: 
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    2*
)( tsigσ = (1- 2

)( tsisi rk ) 2
)( tsigσ  

where  sik  is the variance reduction factor corresponding to the selection intensity among sires of 
age group i:   )( sisisisi xiik −=  
Genetic variance among all selected sires at time t is the pooled genetic variance of selected sires 
within each age group, augmented by the genetic variance between age groups: 

    2*
)( tsgσ = 

sP
1 Σpsi wsi 

2*
)( tsigσ + 

sP
1 Σpsi wsi ( *

)(tsig - *
)( tsg )

2  (5.40) 

Similarly for dams:  2*
)( tdgσ = 

dP
1 Σpdi wdi 

2*
)( tdigσ + 

dP
1 Σpdi wdi ( *

)(tdig - *
)(tdg )

2 (5.41) 

And genetic variance at time t+1 can be computed using equation (5.8) as: 
2

)1( +tgσ  = ¼ 2*
)( tsgσ  + ¼ 2*

)( tdgσ  + ½ 2
0gσ  

 
 

5.6 Effects of Sample size and Inbreeding 
 
There are two additional factors that affect genetic variance in future generations under the 
infinitesimal model: sample size and inbreeding. Models to incorporate these effects will be 
presented in the following sections. 
 
 
5.6.1 Effect of finite population size on genetic variance 
 
Expected variances derived in the previous sections apply to infinite population sizes. When 
selecting n individuals out of a population, in addition to the effect of selection on genetic 

variance, variance is expected to be reduced further by a factor (1-
n
1

). Thus, extending equation 

(5.7):    2*
gσ =  (1-

n
1

)(1 - 2
ˆggrk ) 2

gσ      (5.42) 

This adjustment is needed because the variances predicted in the previous sections are expected 
population variances rather than expected sampling variances. Recalling from statistics, sample 
variance is estimated by dividing sums of squares by n, whereas population variance is estimated 
by dividing sums of squares by n-1. Thus, to convert an estimate of population variance to an 
estimate of sample variance, the population variance estimate must be multiplied by  

(n-1)/n = (1-
n
1

). It is clear that the impact of this adjustment will be minor for n>50. 

 
5.6.2 Effect of Inbreeding on Genetic Variance 
 
The coefficient of inbreeding of an individual is equal to the probability that two alleles drawn at 
random from a locus at that individual are identical by descent. Inbreeding, thereby, reduces the 
variance contributed by Mendelian sampling by a parent by a factor (1-Fi), where Fi is the 
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coefficient of inbreeding of the parent. Averaging over all sires and dams that are used for 
breeding, Mendelian sampling variance contributed to the next generation then is equal to: 

2
)1( +tmg

σ = (1- ½( )()( tdts FF + ))½ 2
)(og

σ     (5.43) 

where )(tsF and )(tdF are mean coefficients of inbreeding of sires and dams selected at time t. 
 
 
 
5.7   Multiple Stage Selection 

 
Breeding goal:   H = v1g1 + v2g2 + v3g3 +  . . . . . . + vngn = v’g 
 
Information sources:  X1 , X2 , X3 , X4 , . . . . . . , Xm 
 
Selection index:  I =  b1X1 + b2X2 + b3X3 +  . . . . . . + bmXm 
 
    b = P-1 G v 
 
Selection on I maximizes response to selection in H 
 

- requires all animals to be measured for all traits 
 
Multiple-stage selection: 
 
   Stage 1: select on I1 =  b1X1 + b2X2 + . . . . + bkXk           = b1’X1 
 
   Stage 2: select on I2 =  b1X1 + b2X2 + b3X3 +  . . . . + bmXm = b2’X 
 
Only animals that are selected in stage 1 have to be evaluated for information 
sources Xk+1 , . . . . , Xm 

 
   Cost savings 
   Opportunities to increase population size for early stages 
 
Optimal index weights:  
  
 I1  : b1 = P11

-1 G1 v  P11 = Var(X1) 
 
      G1 = Cov(X1, g) 
  
 I2  : b2 = P-1 G v 
 

Jack Dekkers


