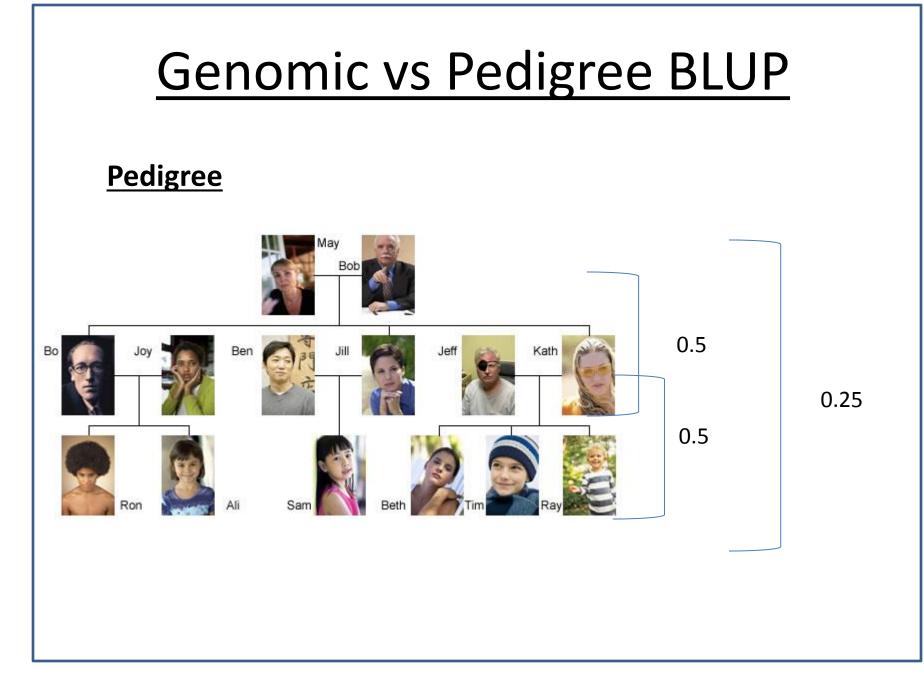
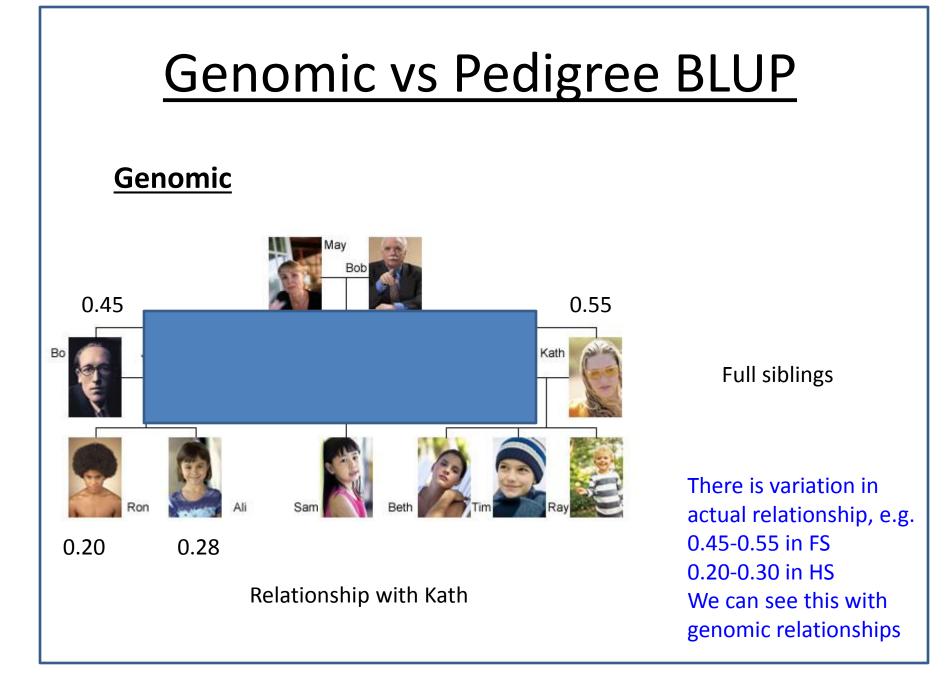

Genomic information and inbreeding

Why use information from relatives?

- High degree of similarity between relatives
- More accurately predict breeding value

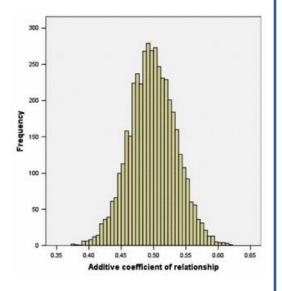




Relationships between Individuals

• Estimated using:

- Expected probabilities from PEDIGREE
- Estimated proportion of genome shared
 - Thousands of genetic markers (SNPs)


Estimates of relationship using genotypes:

- The expectations A
- Replaced by the estimated G

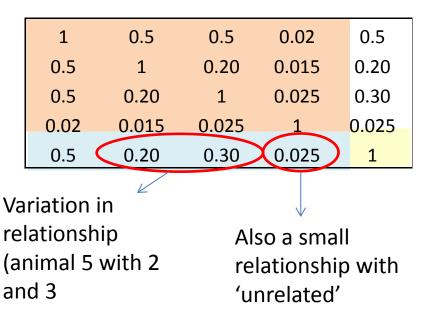
 Genomic relationship matrix

- But which half?
- Variation around the expectation?

There is variation in actual relationship, e.g. 0.40-0.50 in FS

We can see this with genomic relationships

Genomic Prediction: GBLUP


Example: Data on sire 1, his sons (2 and 3) and an unrelated individual (4)

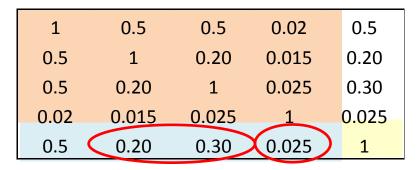
want to predict 5 (also a son of 1) \leftarrow no data

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

Genomic Prediction: GBLUP


Example:

Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5

A-matrix (pedigree-based)

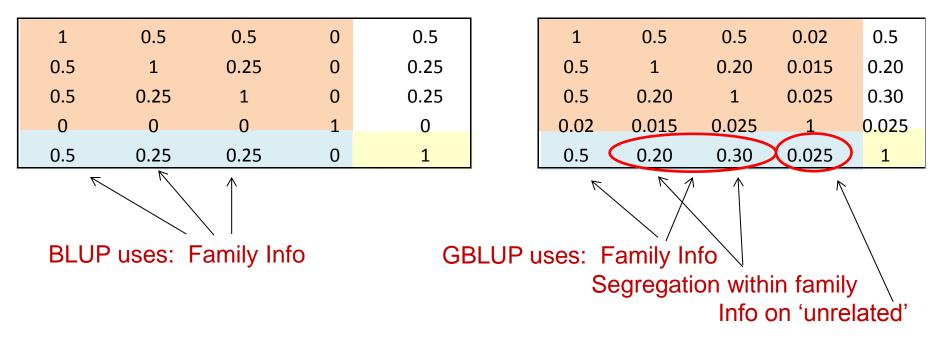
1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

BLUP

 $\hat{u}_5 = 0.1136.y_1 + 0.0455.y_2 + 0.0455.y_3$

GBLUP $\hat{g}_5 = 0.1135.y_1 + 0.0328.y_2 + 0.0591.y_3 + 0.00519.y_4$


Genomic Prediction: GBLUP

Example:

Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5

A-matrix (pedigree-based)

G-matrix (DNA-based)

Inbreeding- revision

- Mating of relatives
- Consequences
 - Many are bad, but not all.....
- Management restricting mating of relatives
 - Optimal contribution selection

- How does Genomics change this?
 - If performing truncation selection....
 - If performing optimal contribution selection...

Truncation selection

• Pedigree BLUP

Vs

• Genomic breeding value (GBLUP)

• Variation in BV among selection candidates

Va = ¼ sire + ¼ dam + ½ MS

What information is used in BVs

Va= ¼ sire + ¼ dam + ½ MS

Across family

Within Family

 Table 2- The proportion of variation in breeding value explained by between family (Sire and Dam) and within family (MS) information.

LIC						ADI	HIS		
BV	Sire	Dam	MS+e	Prop. of PT	BV	Sire	Dam	MS+e	Prop. of PT
PA EBV	0.56	0.44	0.001	0.001	PA EBV	0.44	0.52	0.04	0.05
GEBV	0.43	0.26	0.31	0.56	GEBV	0.33	0.37	0.30	0.36
РТ	0.21	0.31	0.48	1.0	РТ	0.16	0.32	0.52	1.0

Correlation of breeding values and co-selection of relatives

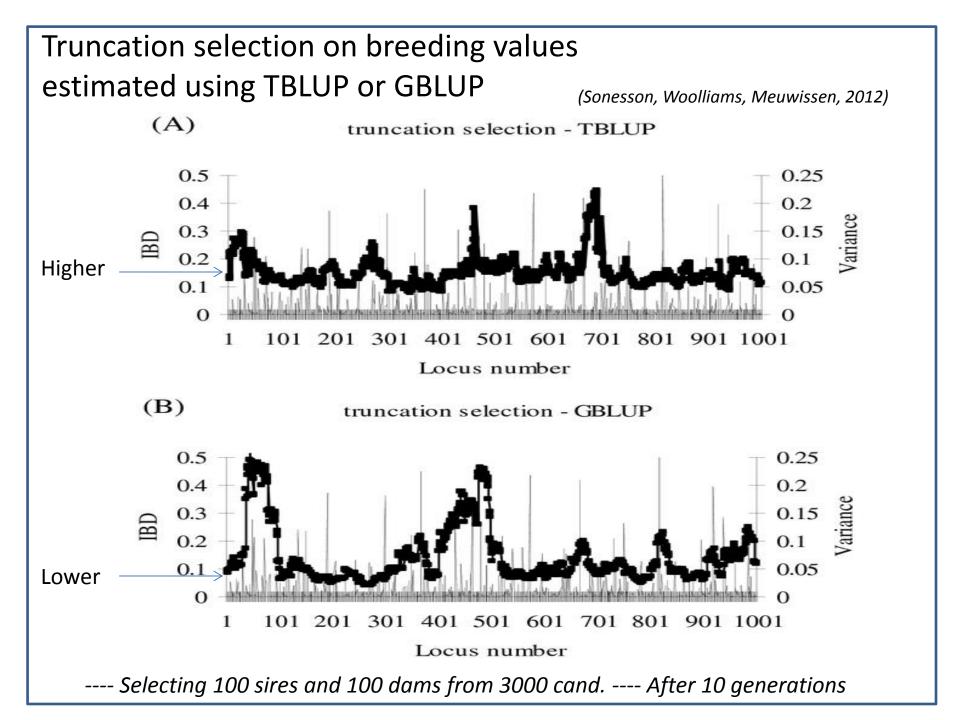
Breeding value type	Half sib correlation	Full Sib correlation	Accuracy
PA EBV	0.55	1.0	0.45
GEBV	0.50	0.85	0.57
TBV	0.26	0.53	1.0

Full Sibs
- share the same Parent average BV (½ sire ½ dam)
- no longer the case with genomics

Half Sibs - Share different PA breeding values

- Small advantage of using G to restrict inbreeding

Truncation selection on breeding values estimated using TBLUP or GBLUP


(Sonesson, Woolliams, Meuwissen, 2012)

	Genetic gain	Inbreeding		
Breeding value estimation	ΔG (se)	ΔF _{ped} (se)	ΔF _{IBD} (se)	
TBLUP	2.49 (0.035)	0.0156 (0.0001)	0.0235 (0.0009)	
GBLUP	2.77 (0.026)	0.0053 (0.0002)	0.0209 (0.0005)	

 $\Delta F_{PED} < \Delta F_{IBD}$

 $\Delta {\rm F}_{\rm PED}$ lower with GBLUP

 ΔF_{IBD} only slightly lower with GBLUP (and even less so if using BayesB)

Constraining Inbreeding:

Pedigree or Genomics, Optimal contributions

- Measures of genetic merit (ḡ)

 Pedigree vs genomic
 Pedigree based BLUP --- Genomic BLUP
- Measures of inbreeding
 - Pedigree vs genomic (A or G) NRM (Pedigree) --- GRM (genomic)

$$Max = \mathbf{c}_{t}' \, \bar{\mathbf{g}}_{t} - \lambda \mathbf{c}_{t}' \mathbf{A}_{t} \mathbf{c}_{t}$$
$$= \mathbf{c}_{t}' \, \bar{\mathbf{g}}_{t} - \lambda \mathbf{c}_{t}' \mathbf{G}_{t} \mathbf{c}_{t}$$

Measuring inbreeding

• Pedigree

- The probability that animals share alleles IBD.

- Genomics
 - GRM (IBS) or what is actually shared.
 - others

Genomic Inbreeding estimates

- Estimates of the number of homozygotes
 - Sharing of markers (IBS)
 - Long runs of homozygotes (more IBD)

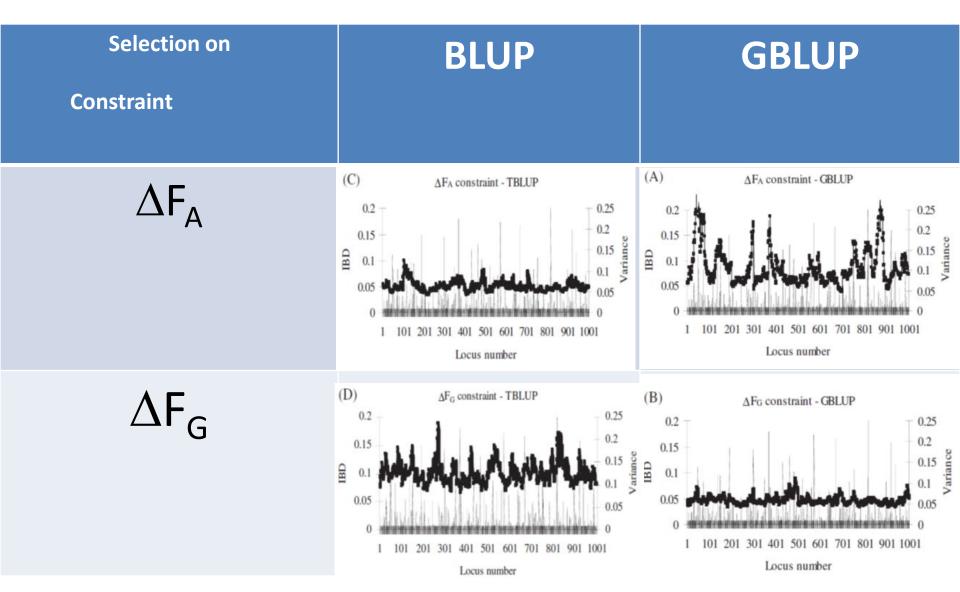
- Genomic relationships (IBS)
 - Various methods
 - Choice of allele frequencies

Example GRM

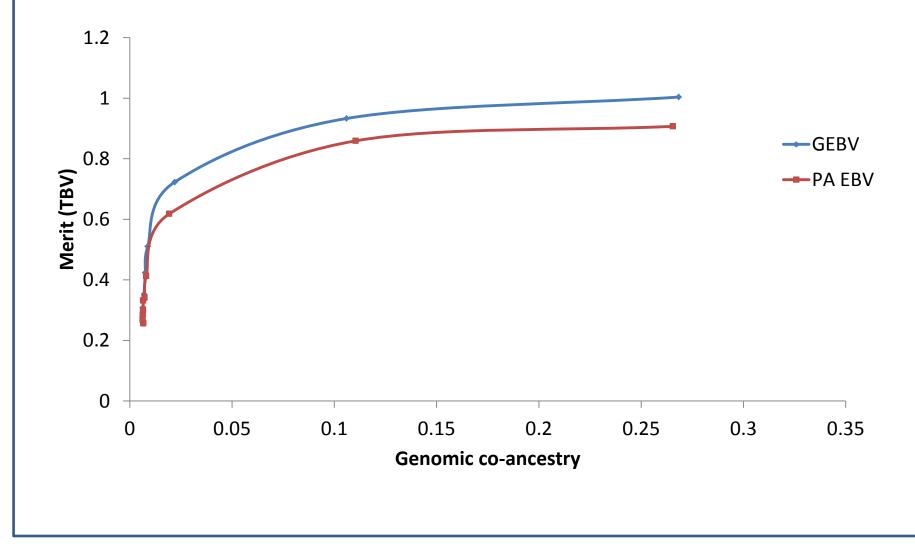
- Z=M-2(pi-0.5)
- ZZ'/2* sum pi(qi) (more weighting to rare alleles)
- Choice of allele frequencies
 - Forni 2012
 - Sets base population
 - Although this is relative and is more important when combining data (Single step)

management

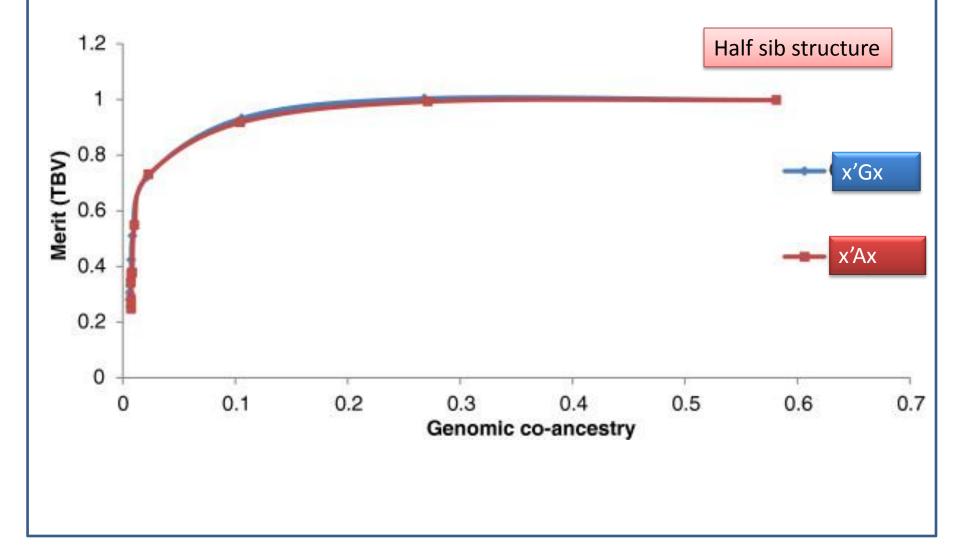
• Optimal contribution

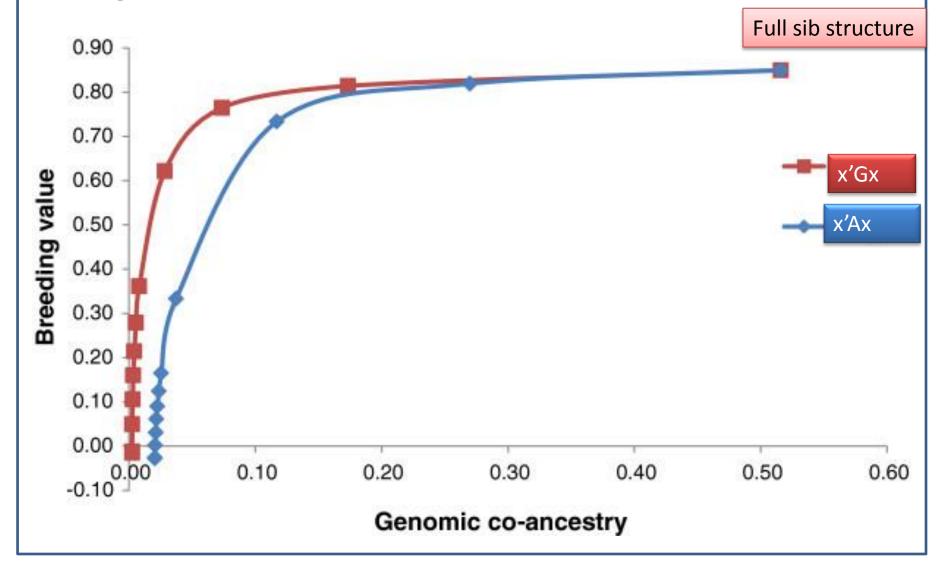

- Pedigree or genomic
 - Pedigree expected based on IBD prob.
 - Genomic observed (although an estimate)

	ΔF _d	∆G (se)	ΔF _{ped} (se)	ΔF _{IBD} (se)
		ΔF _A constraint – GBLUP		
3000	0.005	3.08 (0.035)	0.0050 (0.0001)	0.0211 (0.0004)
6000	0.005	3.10 (0.035)	0.0048 (0.0001)	0.0226 (0.0004)
6000	0.010	3.31 (0.037)	0.0098 (0.0003)	0.0422 (0.0008)
		ΔF _G constraint – GBLUP		
3000	0.005	1.91 (0.026)	0.0041 (0.0001)	0.0051 (0.0001)
6000	0.005	1.95 (0.024)	0.0039 (0.0001)	0.0053 (0.0001)
6000	0.010	2.41 (0.028)	0.0071 (0.0002)	0.0102 (0.0002)
		ΔF _A constraint – TBLUP		
3000	0.005	2.26 (0.003)	0.0050 (0.0001)	0.0068 (0.0001)
6000	0.005	2.50 (0.003)	0.0049 (0.0001)	0.0074 (0.0001)
6000	0.010	2.63 (0.003)	0.0102 (0.0002)	0.0151 (0.0003)
		ΔF _G constraint – TBLUP		
3000	0.005	1.41 (0.041)	0.0193 (0.0004)	0.0121 (0.0002)
6000	0.005	1.44 (0.039)	0.0185 (0.0004)	0.0122 (0.0002)
6000	0.010	1.48 (0.046)	0.0300 (0.0008)	0.0183 (0.0003)


Constraining Inbreeding: Pedigree or Genomics, Optimal contributions

Selection on Constraint	BLUP	GBLUP
ΔF_A	$\Delta {\rm F_A}$ constrained $\Delta {\rm F_G}$ not well constrained	$\Delta {\rm F_A}$ constrained $\Delta {\rm F_G}$ badly constrained
$\Delta {\sf F}_{\sf G}$	$\Delta { m F_A}$ not constrained $\Delta { m F_G}$ not constrained	$\Delta {\rm F_A}$ constrained $\Delta {\rm F_G}$ constrained


Constraining Inbreeding: Pedigree or Genomics, Optimal contributions


How much can we utilize additional diversity? selecting on GEBV vs EBV

How much can we utilize additional diversity? using x'Ax vs x'Gx?

How much can we utilize additional diversity? using x'Ax vs x'Gx?

Genomic information helps to manage inbreeding

- 1. Uses genomic relationships helps to restrict genomic inbreeding.
- 2. Utilizes information about Mendelian sampling
 - 1. More accuracy: more ΔG for same ΔF
 - 2. More diversity \rightarrow more selection space giving raise to even more ΔG for same ΔF but mainly useful for large FS families