

Optimizing Breeding Programs

Effect of Reproductive Technologies and Measurement

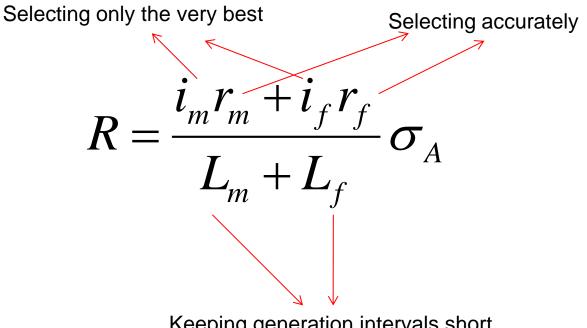
Decisions in breeding programs

Where to go?

breeding objective (which traits)

Who and what to measure?

performance, DNA test


genetic evaluation

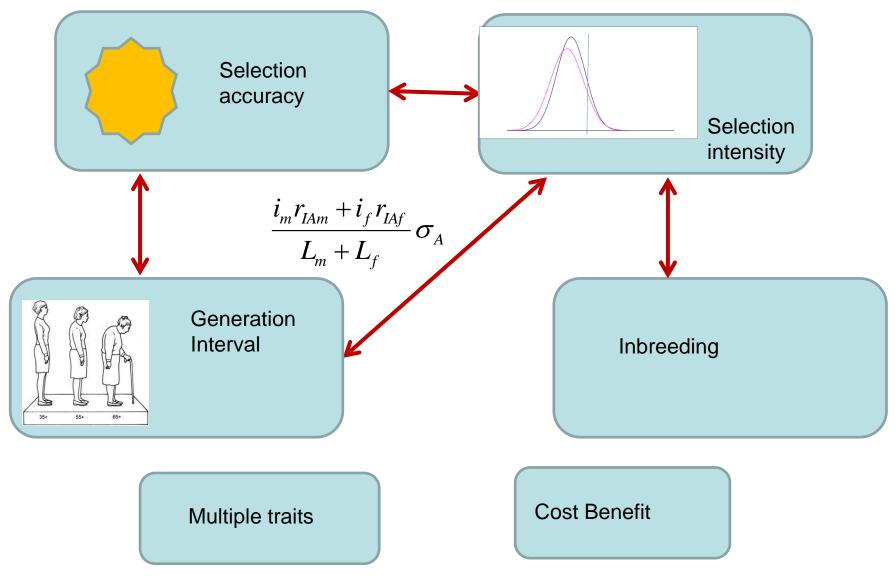
Who to select and mate?

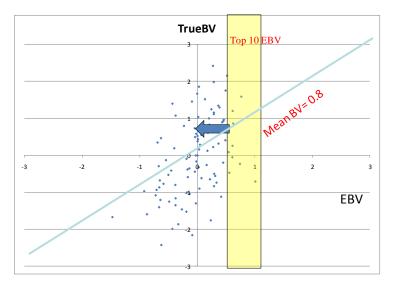
reproductive technol.

gains vs inbreeding

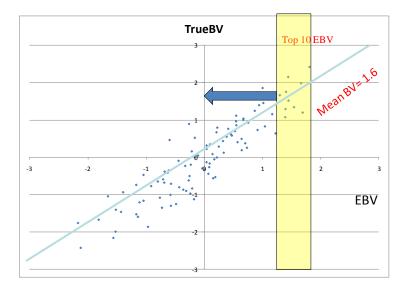
Making genetic progress is about

Keeping generation intervals short


Reproductive rates affect all of the above!

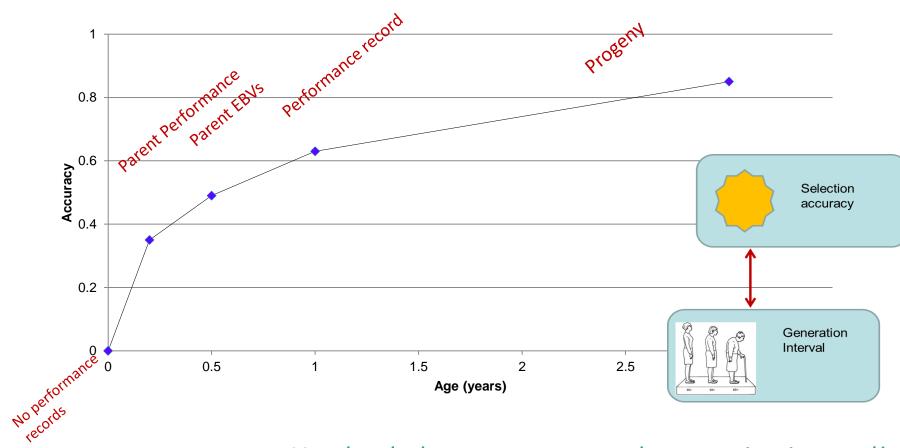

Aspects that need to be balanced:

• Selection accuracy versus generation interval


- $\frac{i_m r_{IAm} + i_f r_{IAf}}{L_m + L_f} \sigma_A$
- Short generation intervals are good for fast progress, but young breeding animals have lower EBV accuracy
- Selection accuracy versus selection intensity
 - Money available for testing (either performance or DNA) can be used to test a few animals accurately, or to test more animals with lower accuracy. For example, testing fewer young bulls but giving them more test progeny.
- Selection intensity versus generation interval
 - Selecting fewer animals for breeding each year and keeping those longer
- Selection intensity versus inbreeding
- The relative emphasis in selection for multiple traits
- Cost versus benefits

Aspects that need to be balanced

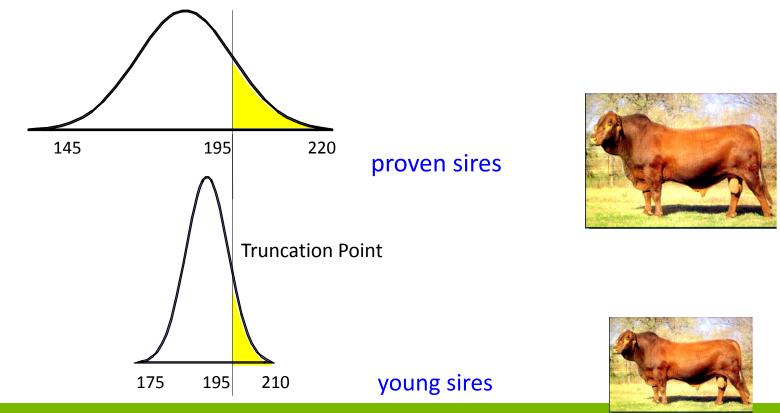
Accuracy = 45%



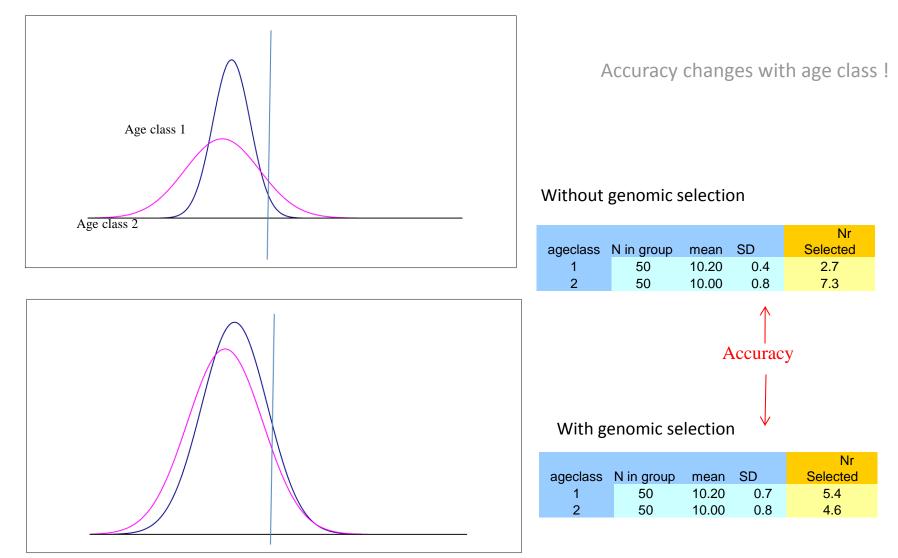
the more accuracy, the more response

Accuracy of predicting a breeding value

increases as an animal gets older

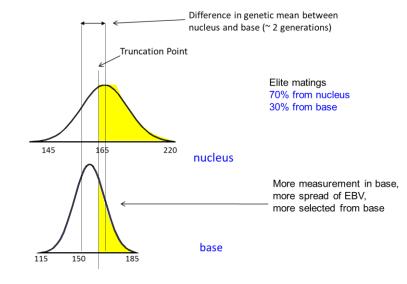


Assumed heritability = 25%


Need to balance accuracy and generation interval!

BLUP helps selecting between old and young bulls

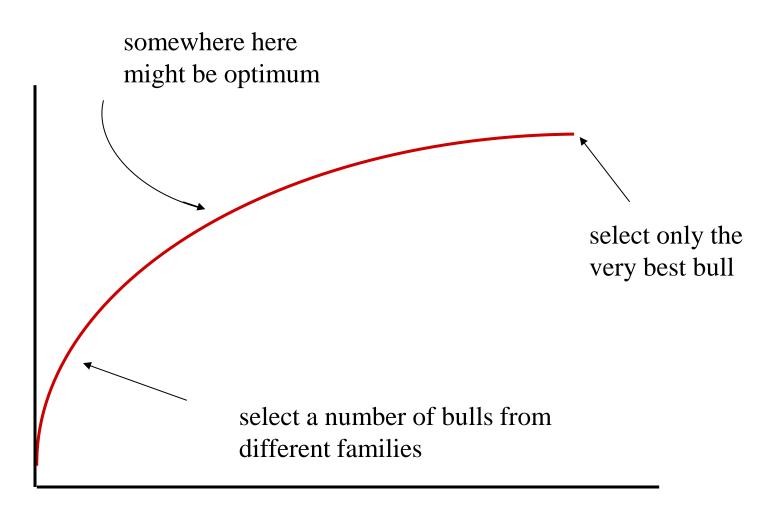
- EBVs can be compared directly over age classes
- Selection on BLUP EBVs optimizes generation interval



Optimizing age structure

Open nucleus systems

- Select the best animals from lower tiers to compete for being nucleus parents
- degree of 'openness depends on
 - difference between nucleus and commercial
 - spread of their breeding values
- Open to nuclei

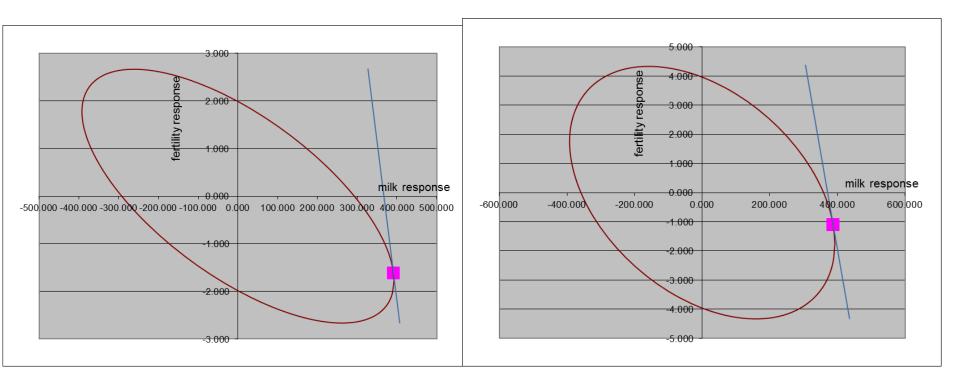

Best to select on EBV, irrespective of accuracy /genotyped or not / age

	birth year	genotyped	progeny	EBV	асс
Kevin	2009	Y	0	+124	71
Tony	2005	Ν	345	+119	97
Bob	2009	Ν	0	+117	63
John	2008	Ν	45	+113	85
Paul	2006	N	1087	+112	99
Geoff	2009	Y	0	+106	40
Malcolm	2007	Ν	67	+105	89

Example of BLUP selection												Selection
Terminals - Top 1 Sires D	Wint	-	ysis I Ywt		E riday Pemd	, 15 June Carcase +	2001 Progeny	Inbreedir Coeff 0	-		contractory and the second contractory was a contractory	
161972 <mark>-1999-9</mark> 90196	HILLCROFT FARMS		14.95	14.94	-1.19	1.62	226.64	38	0.133	83	70	1619721998980093 163000199393012
162368 <mark>-1998-9</mark> 80211			12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260 8600401992920
162204 <mark>-1999-9</mark> 90453			13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205 1619721995950
	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134 1603361992920 inbreeding
161972 <mark>-1998-9</mark> 80527				10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091 1630001993930
860122-1993-930205	OHIO			13.72	-1.60	0.49	203.76	1522		98 00	97 72	8601221992920200 8601221987870
161143-1999-990204			12.10		-0.49 -0.48	2.19 0.24	203.60 200.47	38		82 02	7	
160060 <mark>-1996-9</mark> 60004 161143-1999-990201			14.90 11.83		-0.40 -1.19	0.24 0.83	200.47 199.83	151 39		93 83	87 7	1632801992920016 1623541990900584 1623681998980211 613151995950042
	BURWOOD		11.05	8.82	-2.27	-0.55	198.82	380	0.003	05 96	92	2300091994940171 2300341994940314 These are sibs so
	FELIX	4.50 6.69	13.56	13.36	-0.59	0.53 0.61	197.98	56	0.003	30 70	52 63	1619721995950289 1600341994940020 might not select
	ANNA VILLA	6.30		11.69	-0.42	0.24	196.90	118		90	83	inight flot obloct
	BETHELREI		12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205 1622041996960579 all OF UTELLT as
	DERRYNOCK		11.20	10.10	-0.72	1.60	196.01	18		80		1623681998980211 1440001994940317 flock sire
161972-1996-960020	HILLCROFT FARMS		12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134 1613151991910870
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002 1612351991910691
163677-1999-990307	FELIX	7.09		11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205 1636771994940008
162368-1999-990290	KURRALEA	5.53	10.84		-0.62	1.59	192.11	68		69	62	1623681998980211 1630001993930160
	ADELONG			13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189
	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260 8600371992920165
	KURRALEA	6.58 5.50	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411 8600401992920175
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41 199.90	17	0.003	78	70	1621001998980130 1600341994940171
161437-1999-990006	MARBURN	5 41	10.97	10.93	-1 21	0.37	190 26	14	I	73	65	11604621994940012 1640001993930411

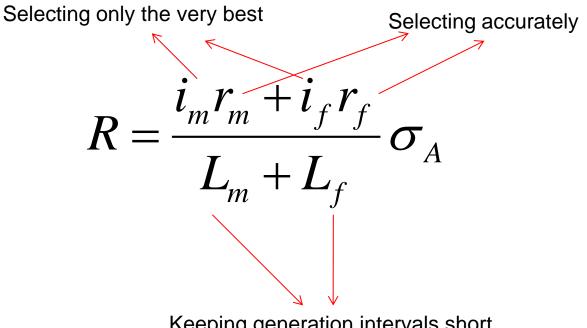
Balancing inbreeding and merit

This graph will look different for each population



merit

inbreeding or co-ancestry

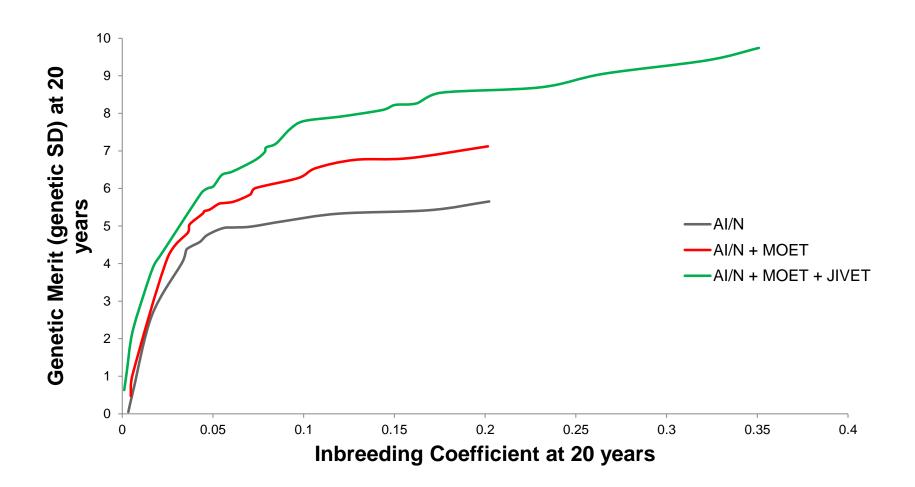

Balancing Traits, weights and information

Multiple traits

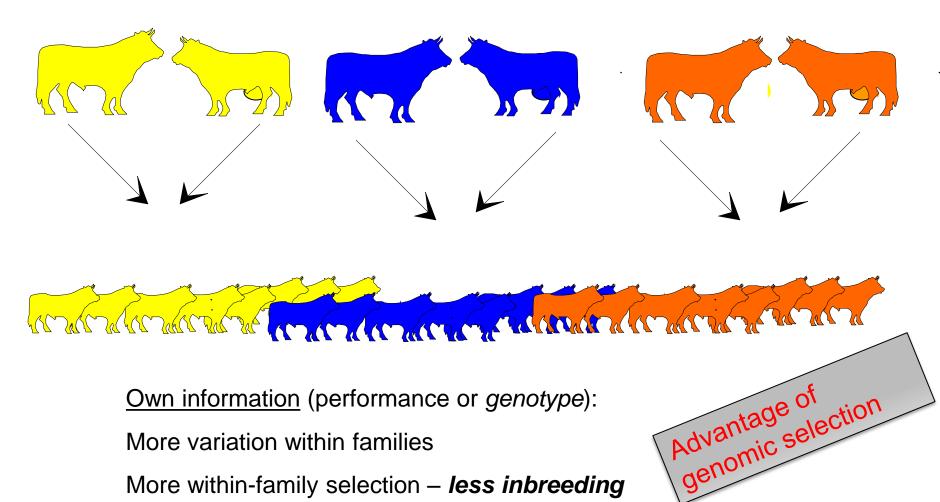
Effect of Reproductive Technologies

Making genetic progress is about

Keeping generation intervals short

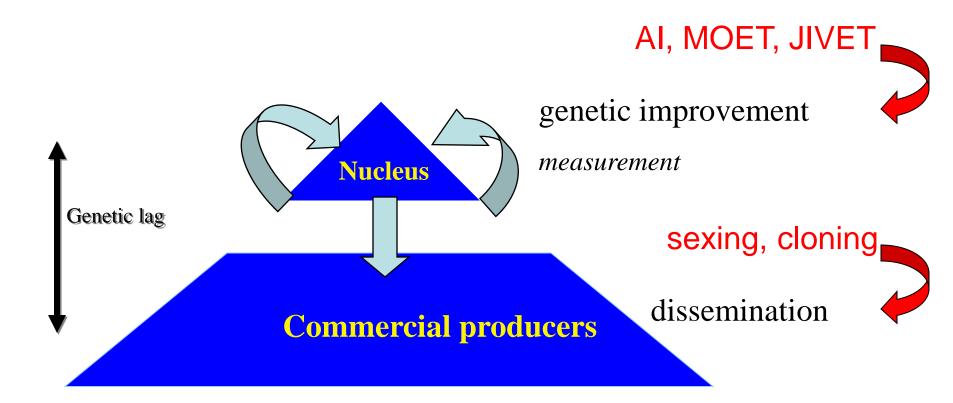

Reproductive rates affect all of the above!

Genetic gain versus genetic diversity


- Early selection can only be based on family information
- Sustainable breeding programs require optimal selection balancing genetic gain and genetic diversity
- Potential short term benefits from reproductive technologies are inhibited by the need to maintain diversity

Genetic Gain vs Inbreeding After 20 Years

Tom Granleese et al., AAABG 2013

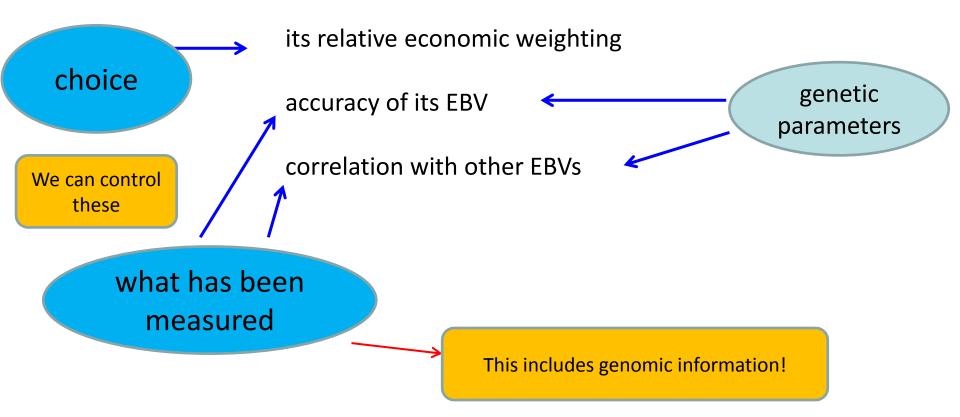


Between versus within family selection

More within-family selection - less inbreeding

Reprod technol. In a breeding design context

Proportion of females assigned technologies at $1\% \Delta dF$ per gen

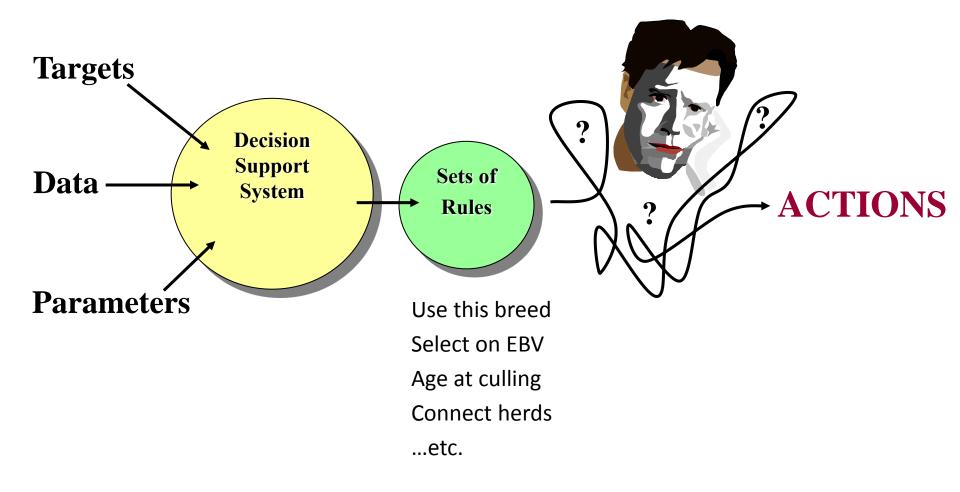

	AI/N	MOET	JIVET Female		Females per male		
Early Trait							
With GS	0.29	0.28	0.43 85	19	4.5		
NO GS	0.34	0.36	0.30 88	20	4.4		
Late Trait							
With GS	0.31	0.26	0.43 📉 88	14	6.3		
NO GS	0.34	0.35	0.31 🥒 89	15	6.0		
Dairy							
With GS	0.38	0.28	0.34 🥿 218	39	5.6		
NO GS	0.47	0.35	0.18 🖌 237	41	5.8		
GS SHIFTS PROPORTION	J						
			Compensate female lack of divers				
Granleese et al., AAABG 207	13 15/18		with more sire	diversity			

Optimizing use of repro technologies

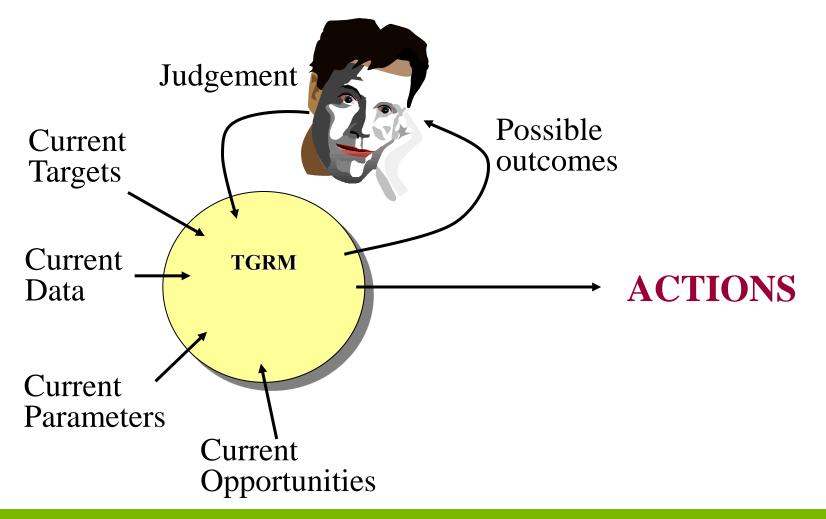
Proportion				Dams	G/yr	
Captured	AI	MOET	JIVET	Used	(\$)	L L
0.06	0.95	0.00	0.05	261	\$2.26	1.87
0.32	0.77	0.04	0.19	221	\$2.82	1.46
0.64	0.36	0.10	0.54	136	\$3.96	1.21

Importance of Trait measurement

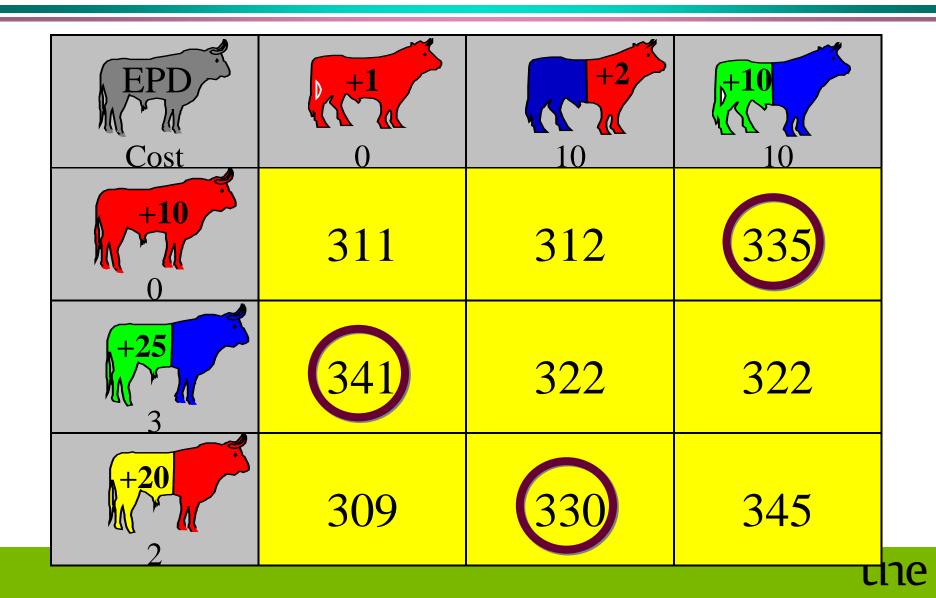
1 The ultimate response of a trait will depend on:

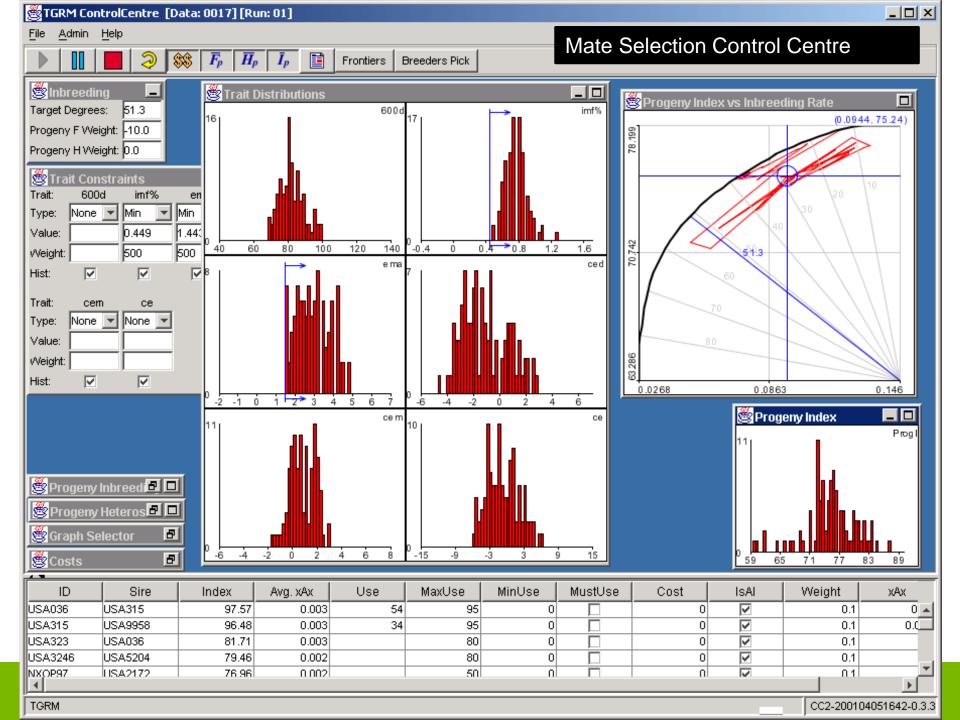

Evaluating Breeding programs

- Deterministic vs Stochastic Simulation
- Optimization strategies

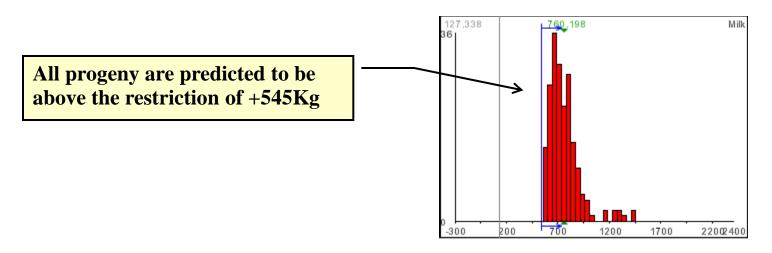

Implementation of programs ...

- Rules-based approach:
 - "Start joining on 1st February"
 - "Use best 10 rams mated to best 400 ewes"
 - "Set up a rotational cross"
- Tactical approach
 - Maximise impact of selection and mating, based on *prevailing* animals, markets, costs, constraints and opportunities.

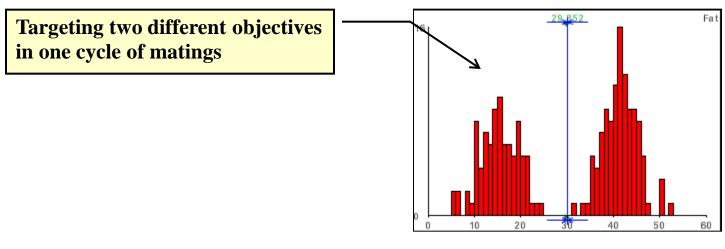

Rules-based approach to Design



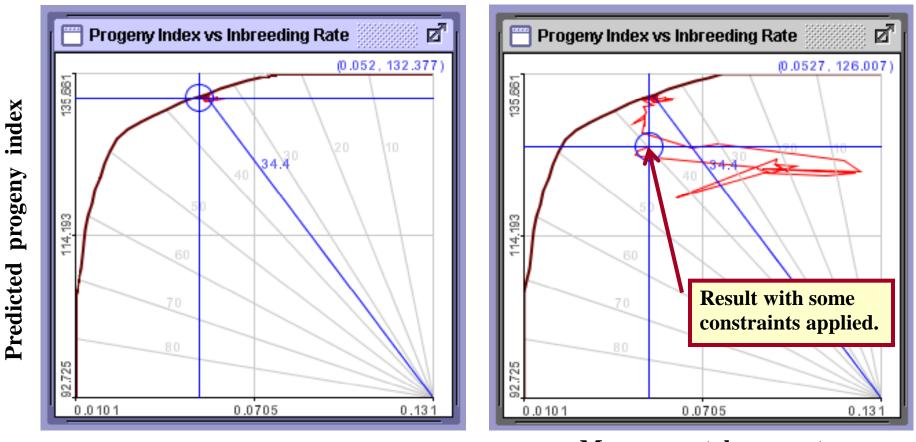
Tactical approach to Design Action Decision Systems



Mate allocations ...



Achieving Trait Constraints


Predicted progeny Milk EBVs

Achieving Trait Constraints

Predicted progeny Fat EBVs

Imposing constraints (eg. Sire use, QTL outcome, trait distributions)

Mean parental coancestry

Mean parental coancestry

cesti y

	Mating List - Netscape File Edit View Go Communicator Help Output: Mating List															
		new <u>G</u> o				j 📩	4	e	<u>.</u>		b citp cit					N
	Back	Forwar	rd Rel e	oad H	lome Sear	rch Netscape	e Print S	Security !		itop						
Fund	🛛 🌿 🖁 Ba	ookmarks	I 🙏 Loc	ation: http:	p://tgrm.une.ed	du.au/servlet/re	ports_show/987	7823367381 <u>-</u>	_0018_01/m	atlst0.htm			- (🗊 🕅 Wh	nat's Relat	ed
/	Anagement Mating List (by Sire) <u>Report Summary</u> Sires Summary Mating List Mating List (CSV) Mating List (TXT)														Ĥ	
Ι.	upjdawa upjdawa												1			
	<u>Sire</u>	up down Dam	index	up dawn <u>F</u>	sireCoan	DamCoan	SortIndex	<u>op down</u> 600d-1	600d-2	op down imf%	ema-1	ema-2	<u>ced</u>	<u>cem</u>	up dawn <u>CC</u>	
	JSA3246	T229	66.68	0.0156	0.003228	0.000138	64.9366	88.00	88.00	0.50	0.15	0.15	1.25	-0.70	0.02	
	JSA3246	T213	70.18	0.0000	0.003228	0.000175	69.9997	81.50	81.50	0.65	1.55	1.55	2.35	0.48	3.48	
	JSA3246	T157	64.68	0.0235	0.003228	0.000000	62.1640	85.00	85.00	0.45	0.20	0.20	2.81	-1.08	0.83	
	JSA3246	T137	65.64	0.0000	0.003228	0.000000	65.4690	72.00	72.00	0.70	0.40	0.40	2.88	1.52	6.09	
	JSA3246	T117	68.09	0.0078	0.003228	0.000087	67.1344	76.00	76.00	0.65	1.45	1.45	2.80	0.81	4.59	
	JSA3246	т063	76.10	0.0039	0.003228	0.000000	75.5340	77.00	77.00	0.90	1.35	1.35	-0.09	0.03	0.14	
	JSA3246	T057	73.06	0.0000	0.003228	0.000000	72.8840	70.00	70.00	0.90	-0.55	-0.55	2.74	0.34	3.60	
	JSA3246	т029	64.08	0.0235	0.003228	0.000132	61.5570	77.50	77.50	0.60	0.40	0.40	3.38	-0.97	1.62	
	JSA3246	т020	75.63	0.0078	0.003228	0.000000	74.6740	90.50	90.50	0.65	1.45	1.45	1.87	-0.43	1.17	
	JSA3246	T013	67.38	0.0000	0.003228	0.000133	67.2019	77.50	77.50	0.70	1.20	1.20	1.69	0.48	2.82	
	JSA3246	тоо8	72.18	0.0000	0.003228	0.000298	71.9982	73.50	73.50	0.75	1.05	1.05	3.04	2.21	7.62	
	JSA3246	S305	63.88	0.0078	0.003228	0.000141	62.9215	81.50	81.50	0.55	1.35	1.35	-0.42	-0.71	-1.67	
	JSA3246	R001	66.58	0.0000	0.003228	0.000000	66.4090	67.50	67.50	0.80	1.35	1.35	3.75	1.14	6.20	
	JSA3246	Q075	62.24	0.0000	0.003228	0.009841	61.5426	84.00	84.00	0.55	0.35	0.35	2.09	0.25	2.76	
	JSA3246	Q001	73.62	0.0000	0.003228	0.000000	73.4490	73.00	73.00	0.80	1.30	1.30	2.50	0.36	3.40	
	JSA323	R211	67.93	0.0000	0.000296	0.000093	67.9094	87.50	87.50	0.55	2.85	2.85	-3.00	-2.26	-8.13	
	JSA315	Т99	74.46	0.0000	0.022720	0.000116	73.2452	89.50	89.50	0.70	2.00	2.00	0.22	-0.21	-1.76	
	JSA315	T270	79.83	0.0000	0.022720	0.000000	78.6263	94.00	94.00	0.80	2.60	2.60	-0.14	0.27	-1.15	
	JSA315	T259	72.26	0.0000	0.022720	0.000114	71.0503	85.50	85.50	0.70	0.55	0.55	-0.46	-0.01	-2.04	
	JSA315	T243	76.79	0.0625	0.022720	0.000154	69.3281	88.00	88.00	0.75	2.95	2.95	-1.00	0.20	-2.15	
	JSA315	T217	72.43	0.0000	0.022720	0.000000	71.2263	82.00	82.00	0.70	0.55	0.55	0.49	0.13	-0.80	
đ	· =•-		D	ocument:	Done							🐝	🎙 🕮 🥫	, P 🔝	. 炎	

