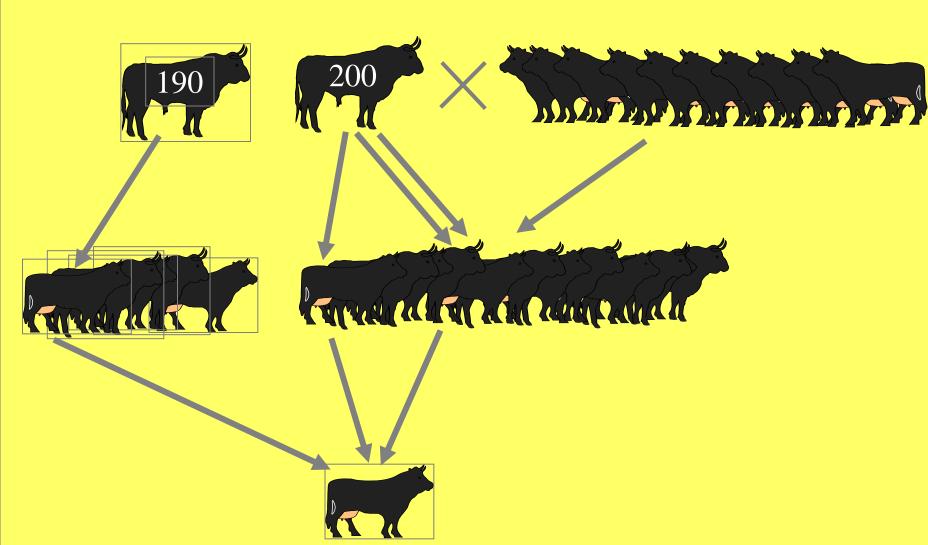
Balancing Selection and Inbreeding


- Higher selection intensities make bigger gain
- Fewer animals are selected, so also more inbreeding
- This trend is more evident with higher rates of fecundity
- Effect of new reproductive technologies
- Genetic evaluation (BLUP) favors selection of related animals

 rationalization of selection make inbreeding restriction methods a necessity

How to restrict inbreeding?

- Mating policies mostly affect
 - progeny inbreeding (short term)
 - but not *long term* rate of inbreeding ΔF
 - The long term inbreeding rate depends on effective population size

 Long term inbreeding is restricted by restricting the average co-ancestry among selected parents

Effective Population Size: Ne

Accounting for unequal sex ratio

 Effective pop'n size (Ne) reduces towards sex with fewer breeding individuals

$$Ne = \frac{4.N_m.N_f}{N_m + N_f}$$

Males / generation	2	2	2	5	20	1
Females / generation	2	20	200	200	200	99999
N	4	22	202	205	220	100,000
Ne	4	7.3	7.9	19.5	72.7	4

With selection, this formula underpredicts inbreeding (2x) But it shows that usually, it is controlled by using enough sires

A feature of BLUP

 BLUP uses family information (and more so at lower heritabilities)

 Selection on BLUP EBVs can thus results in higher inbreeding than selection on phenotypes alone

- Best strategy: Balance merit and genetic diversity
 - Start selecting from top, but leave an animal out if sibs have been selected already

Example of BLUP selection

Terminals - Top 150 Analysis Date Friday, 15 Jur									2001				T.A.M	RPT.AN'
Sires										Inbreedin	g & A	ccuracies	Burthern in Bloc	g Breeding and Erwhalian
ID	Stud of breeding	Wwt	Pwwt	Ywt	Pfat	Pemd	C	rcase +	Progeny	Coeff W	Jeight	Carcase	Sire	Sire of Dam
161972-1999-99 <mark>0196</mark>	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62		226.64	38	0.133	83	70	1619721998980093	1630001993930134
162368-1998-98 <mark>0211</mark>	KURRALEA	6.60	12.39	12.69	-0.89	2.50		215.20	1148		97	96	1623681994940260	8600401992920175
162204-1999-99 <mark>0453</mark>	BETHELREI	8.52	13.38	15.87	-1.18	1.11		211.75	224		93	89	8601221993930205	1619721995950289
161972-1998-98 <mark>0093</mark>	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25		207.51	12		80	74	1630001993930134	1603361992920349
161972-1998-98 <mark>0527</mark>	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47		204.10	25		85	76	1619721996960091	1630001993930134
860122-1993-93 <mark>0205</mark>	OHIO OHIO	6.95	11.94	13.72	-1.60	0.49		203.76	1522		98	85	860122199292020	8601221987870073
161143-1999-99 <mark>0204</mark>	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19		203.60	38		82	76	1623681998980211	1640001993930411
160060-1996-96 <mark>0004</mark>	anna villa	8.56	14.90	16.18	-0.48	0.24		200.47	151		93	87	163280199292 00 16	1623541990900584
161143-1999-99 <mark>0201</mark>	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83		199.83	39		83	77	1623681998980211	1613151995950042
230034-1997-97 <mark>0904</mark>	BURWOOD	4.98	11.01	8.82	-2.27	-0.55		198.82	380	0.003	96	92	2300091994940171	2300341994940314
163677-2000-00 <mark>0140</mark>	FELIX	6.69	13.56	13.36	-0.59	0.61		197.98	56		70	63	1619721995950289	1600341994940020
160060-1997-97 <mark>0115</mark>	anna villa	6.30	14.47	11.69	-0.42	0.24		196.90	118		90	83	16006019969600 04	16006 01992920057
162204-1999-99 <mark>0394</mark>	BETHELREI	7.42	12.97	14.27	-1.03	0.14		196.85	24		82	74	8601221993930205	1622041996960579
161143-1999-99 <mark>0064</mark>	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60		196.01	18		80	74	1623681998980211	1640001994940317
161972-1996-960020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0.36		195.20	83		88	75	1630001993930134	
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63		194.57	101		90	83	1630001993930134	1613151991910870
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50		194.54	34		87	79	1700991993930002	1612351991910691
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47		192.45	54		83	74	8601221993930205	1636771994940008
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59		192.11	68		69	62	1623681998980211	1630001993930160
860074-1995-950044	ADELONG	7.17	14.47	13.22	-0.80	-0.94		191.15	448		96	94	8600741993930189	
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99		190.92	12		71	60	1623681994940260	8600371992920165
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08		190.69	178		88	83	1640001993930411	8600401992920175
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04		190.41	17	0.003	78	70	1621001998980130	1600341994940171
161437-1999-990006	WARRURN	5 41	10.97	10.93	-1 21	0.37		190 26	14		73	65	1604621994940012	1640001993930411

These are sibs so might not select all of them as flock sire

More theoretical

- BLUP selection leans on family info
- Causing co-selection of relatives

 Reducing weight on family info is like moving from BLUP to mass selection

- Inbreeding rate depends on emphasis on
 - Between vs Within Family selection
 - Family info versus Mendelian Sampling info

Earlier attempts to restrict inbreeding

Put less emphasis on family information

Minimum co-ancestry matings

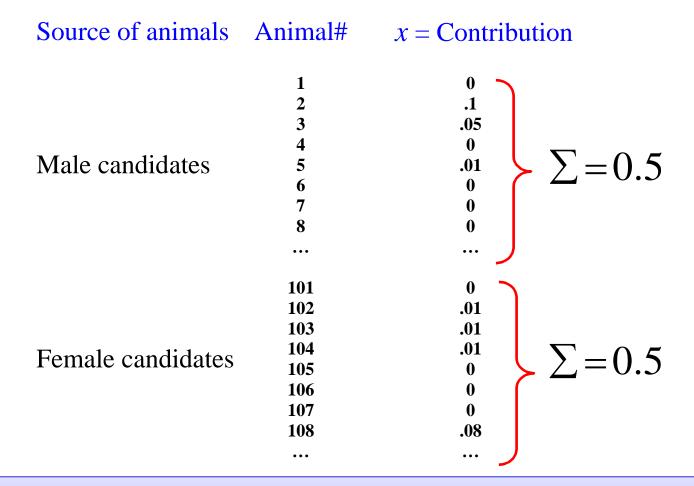
Mates Selection

Jointly optimizing merit and inbreeding

Wray and Goddard, 1994

 $x'G + \lambda x'Ax$

• merit: x'G λ = penalty on inbreeding


- x = vector with each animal's contribution to progeny
- G = the vector with merit (EBV's) for each animal

Co-ancestry: x'Ax

- x = vector with each animal's contribution to progeny
- A = Numerator Relationships Matrix

Remember: $\Delta F = x'Ax/2$ $F_i = 0.5 a_{ij}$

Vector x of animal contributions

Note that this does not only determine number of selected sires and dams, but also allows for unequal contributions

How to find an optimal x?

Meuwissen, 1997

Optimize gain at a fixed rate of inbreeding (C)

Max(xG | constrain x'Ax=C, sum of x = 0.5 per sex)

Use a Langrange multipliers to solve for x.

Balancing inbreeding and merit

 Restricting co-ancestry but this slows genetic (short term) progress

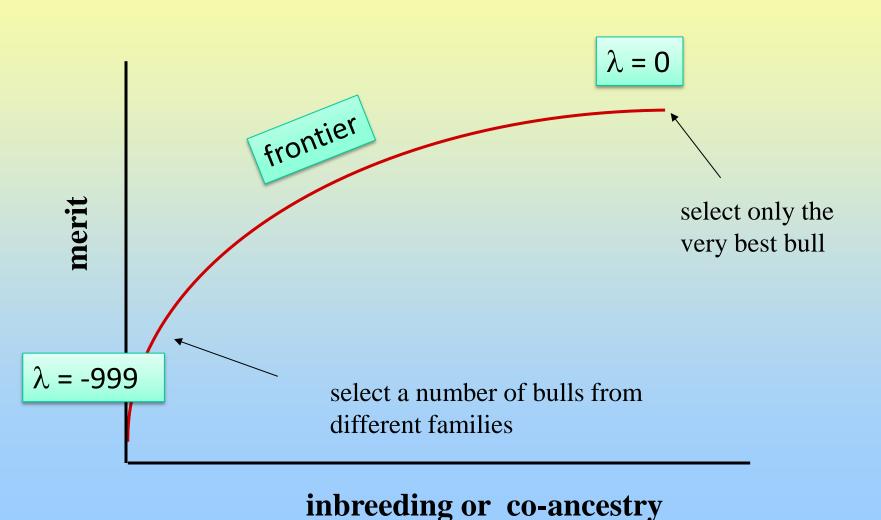
How much inbreeding can we afford?

• Often inbreeding is restricted by limiting ΔF to a certain preset value

 This optimal value may depend on your situation (how open is your nucleus?)

How to find an optimal x?

Kinghorn, 2000-ish


 $x'G + \lambda x'Ax$

• Draw a frontier by varying λ

• For given λ Max(x'G + λ x'Ax | constrain sum of x=0.5 per sex)

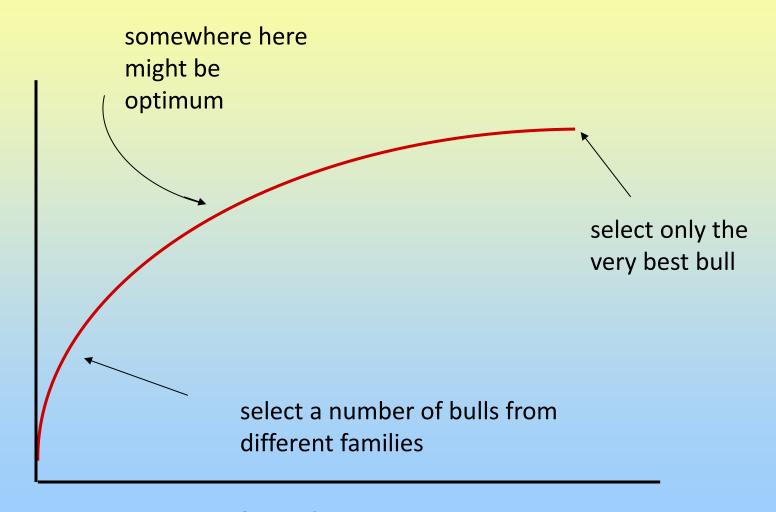
- Use Differential Evolution multipliers to solve for x
 - Versatile, can easily set other constraints, minuse, maxuse

Balancing inbreeding and merit

Optimizing genetic contributions

Maximize objective function

$$x'G - \underline{\lambda}x'Ax$$


Question: what is best value for λ ?

Could preset rate of inbreeding (e.g. 1%) and determine λ accordingly (Meuwissen, 1997)

Alternative: look at graph (next slide)

Balancing inbreeding and merit

This graph will look different for each population

merit

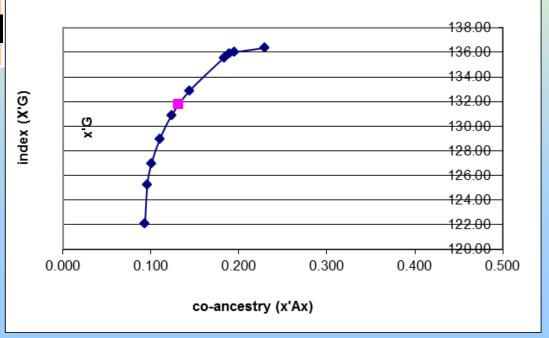
inbreeding or co-ancestry

Some expansion

- Account for juvenile matings (last year's)
 - Augment A-matrix

Overlapping generations

xGxAx.xls


Ž	7 X	nmales	nfemales	G		Relation	ships M	atrix				
Male 1	0.063	4	4	127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
Male 2	0.076			122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
Male 3	0.361	Find	optimal	150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00
Male 4	0.000	contr	ibutions	109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25
Female 1	0.208			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.238			123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
Female 3	0.000			89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
Female 4	0.055			113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
			404.75									

average merit of progeny x'G 131.75

Inbreeding weight λ -50.0

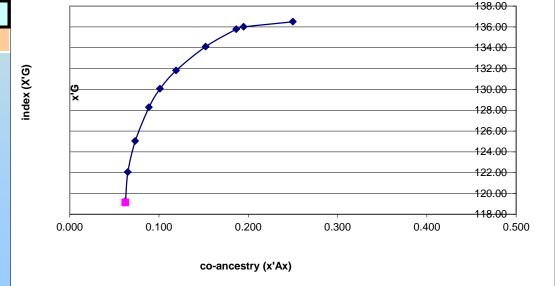
rage co-acestry of progeny x'Ax 0.132

This is more than simply moving back from BLUP to mass selection (penalizing family info)

Inbreeding weight

rage co-acestry of progeny

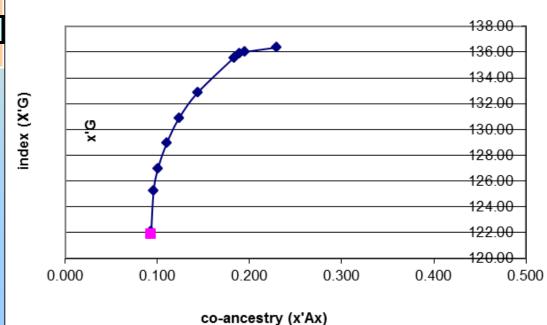
λ


x'Ax

0.0

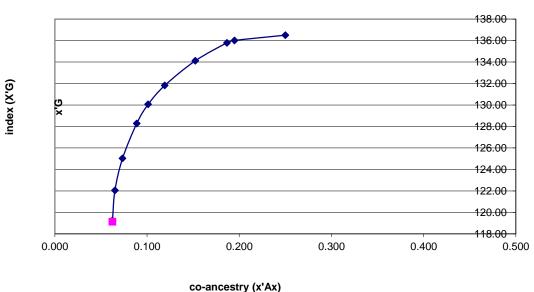
0.250

xGxAx.xls


· · · · · · · · · · · · · · · · · · ·												
Ž	7 X	nmales nfemales		G		Relationships Matrix						
Male 1	0.000	4	4	127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
Male 2	0.000			122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
Male 3	0.500		optimal	150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00
Male 4	0.000	contr	ributions	109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25
Female 1	0.000			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.500			123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
Female 3	0.000			89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
Female 4	0.000			113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
average me	erit of progeny	x'G	136.50									

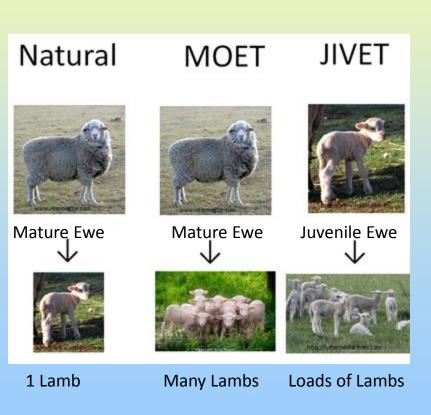
xGxAx.xls

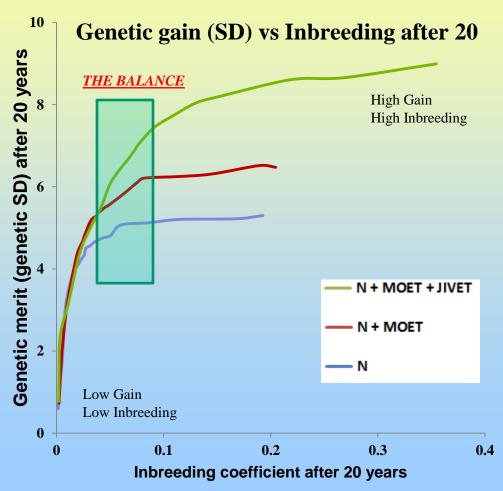
	4											
2	χ	nmales	nfemales	G		Relation	ships M	atrix				
Male 1	0.127	4	4	127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
Male 2	0.108			122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
Male 3	0.129	Find	optimal	150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00
Male 4	0.136	contr	ributions	109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25
Female 1	0.189			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.177			123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
Female 3	0.049			89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
Female 4	0.085			113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
•			104.04									


average merit of progeny x'G 121.91
Inbreeding weight λ -99999999.0
rage co-acestry of progeny x'Ax 0.093

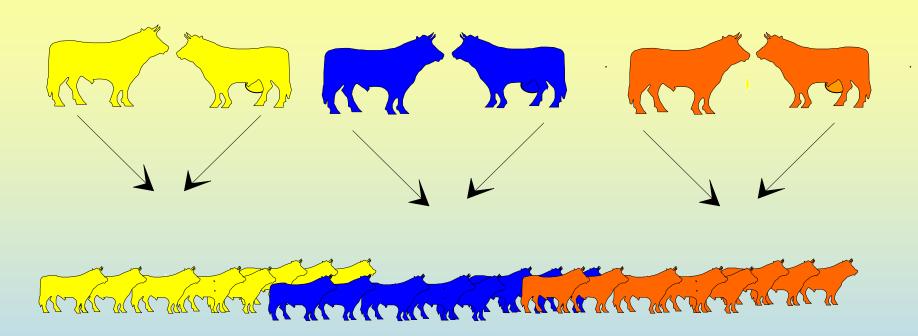
xGxAx.xls

	'	_											
X		nmales	nfemales	G		Relation	ships M	atrix					
	Male 1	0.125	4	4	127	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Male 2	0.125			122	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
	Male 3	0.125		Find optimal		0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
	Male 4	0.125	contr	contributions		0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
	Female 1	0.125			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
	Female 2	0.125			123	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
	Female 3	0.125			89	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
	Female 4	0.125		_	113	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
	average merit of progeny		x'G	119.12			<u> </u>						


Inbreeding weight λ -9999999.0 rage co-acestry of progeny x'Ax 0.063



Genetic Gain vs Inbreeding while using female reproductive technologies


Tom Granleese, 2014

Reproductive technologies

Between versus within family selection

Own information (performance or *genotype*):

More variation within families

More within-family selection – *less inbreeding*

Advantage of genomic selection

Ultimately, genetic gain is about utilizing Mendelian sampling Variance

Conclusion Optimal Contribution Selection

- OCS is the only sensible selection method
 - Optimality subject to some degree of subjectivity
 - Separates best prediction of merit from selection rule
 - Play with number of parents as well as progeny per selected parent → optimizes contributions
 - Different from simply giving more weight to family info
- Hard to deterministically predict response to OCS