Multiple Stage Selection Jack Dekkers

Multi-trait breeding goal:	$H = \mathbf{v}_1 \mathbf{g}_1 + \mathbf{v}_2 \mathbf{g}_2 + \mathbf{v}_3 \mathbf{g}_3 + \ldots + \mathbf{v}_n \mathbf{g}_n = \mathbf{v}^2 \mathbf{g}$
Information sources:	X_1 , X_2 , X_3 , X_4 , , X_m
Multi-trait selection index:	$I = b_1 X_1 + b_2 X_2 + b_3 X_3 + \ldots + b_m X_m$
Optimal index weights:	$\mathbf{b} = \mathbf{P}^{-1} \mathbf{G} \mathbf{v}$

Selection on I maximizes response to selection in H, but requires all animals to be measured for all traits.

Multiple-stage selection:

Stage 1: select on
$$I_1 = b_1 X_1 + b_2 X_2 + ... + b_k X_k = b_1' X_1$$

Stage 2: select on $I_2 = b_1 X_1 + b_2 X_2 + ... + b_k X_k + b_{k+1} X_{k+1} + ... + b_m X_m = b_2' X_1$

Only animals that are selected in stage 1 have to be evaluated for X_{k+1} , ..., X_m

 \rightarrow Cost savings

→ Opportunities to increase population size for early stages

Optimal index weights:

Stage 1:
$$I_1$$
: $\mathbf{b}_1 = \mathbf{P}_{11}^{-1} \mathbf{G}_1 \mathbf{v}$ $\mathbf{P}_{11} = \operatorname{Var}(\mathbf{X}_1) \quad \mathbf{G}_1 = \operatorname{Cov}(\mathbf{X}_1, \mathbf{g})$
Stage 2: I_2 : $\mathbf{b}_2 = \mathbf{P}^{-1} \mathbf{G} \mathbf{v}$ $\mathbf{P} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{G}_2 \end{bmatrix}$

Optimal weights for index I_2 are not affected by selection on I_1 in stage 1, provided all data included in I_1 is also included in I_2 (Cunningham 1975 Theor. Appl. Genet. 46:55) But accuracy and response to selection on I_2 are affected by selection on I_1 :

Stage 1: accuracy of
$$I_{1:}$$
 $r_1 = \sqrt{\frac{\mathbf{b_1'G_1v}}{\mathbf{v'Cv}}}$ Trait response vector: $S_{g,1} = i_1 \frac{\mathbf{b_1'G_1}}{\sqrt{\mathbf{b_1'P_{11}b_1}}}$
Stage 2: accuracy of $I_{2:}$ $r_2 = \sqrt{\frac{\mathbf{b_2'G^*v}}{\mathbf{v'C^*v}}}$ Trait response vector: $S_{g,2} = i_2 \frac{\mathbf{b_2'G^*}}{\sqrt{\mathbf{b_2'P^*b_2}}}$

This assumes multi-variate normality of variables at stage 2 (despite stage 1 selection).

Total response vector across both stages: $S_g = S_{g,1} + S_{g,2}$

Matrices \mathbf{P}^* , \mathbf{G}^* , and \mathbf{C}^* are \mathbf{P} , \mathbf{G} , and \mathbf{C} matrices adjusted for selection on I_1

Matrix equivalent of adjustment of (co-)variance for selection on variable w (used for Bulmer effect):

$$\sigma_{xy}^{*} = \sigma_{xy} - k \frac{\sigma_{wx} \sigma_{wy}}{\sigma_{w}^{2}} \qquad k = i(i-t) \qquad t = \text{truncation point}$$

Consider vectors \mathbf{w} , \mathbf{x} , \mathbf{y} Select on index $\mathbf{b'w}$ $\operatorname{Cov}(\mathbf{x}, \mathbf{y})^* = \operatorname{Cov}(\mathbf{x}, \mathbf{y}) - k \frac{\operatorname{Cov}(\mathbf{x}, \mathbf{b'w}) \operatorname{Cov}(\mathbf{b'w}, \mathbf{y})}{\operatorname{Var}(\mathbf{b'w})}$ $= \operatorname{Cov}(\mathbf{x}, \mathbf{y}) - k \frac{\operatorname{Cov}(\mathbf{x}, \mathbf{w})\mathbf{bb'}\operatorname{Cov}(\mathbf{w}, \mathbf{y})}{\mathbf{b'}\operatorname{Var}(\mathbf{w})\mathbf{b}}$

With stage 1 selection on $\mathbf{b'w} = \mathbf{b_1'X_1} \rightarrow \text{Matrices to use in Stage 2:}$

$$\mathbf{P}^* = \operatorname{Var}(\mathbf{X})^* = \operatorname{Cov}(\mathbf{X}, \mathbf{X})^* = \mathbf{P} \cdot k \frac{\operatorname{Cov}(\underline{\mathbf{X}}, \underline{\mathbf{X}}_1)\underline{\mathbf{b}}_1 \ \underline{\mathbf{b}}_1' \operatorname{Cov}(\underline{\mathbf{X}}_1, \underline{\mathbf{X}})}{\underline{\mathbf{b}}_1' \operatorname{Var}(\underline{\mathbf{X}}_1)\underline{\mathbf{b}}_1}$$
$$= \mathbf{P} \cdot k \frac{\left[\frac{\mathbf{P}_{11}}{\underline{\mathbf{P}}_{21}}\right] \underline{\mathbf{b}}_1 \ \underline{\mathbf{b}}_1' \left[\underline{\mathbf{P}}_{11} \ \underline{\mathbf{P}}_{21}\right]}{\underline{\mathbf{b}}_1' \underline{\mathbf{P}}_{11} \underline{\mathbf{b}}_1}$$

$$\mathbf{G}^{*} = \operatorname{Cov}(\mathbf{X}, \mathbf{g})^{*} = \mathbf{G} - k \frac{\operatorname{Cov}(\underline{\mathbf{X}}, \underline{\mathbf{X}}_{1})\underline{\mathbf{b}}_{1} \underline{\mathbf{b}}_{1}' \operatorname{Cov}(\underline{\mathbf{X}}_{1}, \underline{\mathbf{g}})}{\underline{\mathbf{b}}_{1}' \operatorname{Var}(\underline{\mathbf{X}}_{1})\underline{\mathbf{b}}_{1}}$$
$$= \mathbf{G} - k \frac{\left[\frac{\mathbf{P}_{11}}{\underline{\mathbf{p}}_{21}}\right] \underline{\mathbf{b}}_{1} \underline{\mathbf{b}}_{1}' \underline{\mathbf{G}}_{1}}{\underline{\mathbf{b}}_{1}' \underline{\mathbf{P}}_{11} \underline{\mathbf{b}}_{1}}$$

$$\mathbf{C}^* = \operatorname{Var}(\mathbf{g})^* = \operatorname{Cov}(\mathbf{g}, \mathbf{g})^* = \mathbf{C} - k \frac{\operatorname{Cov}(\underline{\mathbf{g}}, \underline{\mathbf{X}}_1)\underline{\mathbf{b}}_1 \, \underline{\mathbf{b}}_1 \, '\operatorname{Cov}(\underline{\mathbf{X}}_1, \underline{\mathbf{g}})}{\underline{\mathbf{b}}_1 \, '\operatorname{Var}(\underline{\mathbf{X}}_1)\underline{\mathbf{b}}_1}$$
$$= \mathbf{C} - k \frac{\underline{\mathbf{G}}_1 \, '\underline{\mathbf{b}}_1 \, \underline{\mathbf{b}}_1 \, '\underline{\mathbf{G}}_1}{\underline{\mathbf{b}}_1 \, '\underline{\mathbf{P}}_{11} \underline{\mathbf{b}}_1}$$

See 2-stage selection example.xls

Multi-stage selection with availability of multi-trait EBV:

EBV for all *m* traits available at every stage (but with different accuracies)

- select on complete index at every stage with weights = economic values $I = \mathbf{v}_1 \hat{\mathbf{g}}_1 + \mathbf{v}_2 \hat{\mathbf{g}}_2 + \dots + \mathbf{v}_n \hat{\mathbf{g}}_n$

Optimization of proportions selected at each stage

Total proportion selected over *s* stages = P Proportion selected at stage $i = p_i$ $P = \prod_{i=1}^{s} P_i$

 $\mathbf{a}_{i} = \text{cost of traits measured at stage i}$

Total cost = TC =
$$a_1 + \sum_{i=2}^{s} a_i \prod_{j=1}^{i-1} p_j$$

Proportions selected and measured at each stage can then be optimized based on an overall objective function (e.g. profit) and associated responses to selection.

Selection response in stage 2 predicted by assumes multivariate normality $S_{g,2} = i_2 \frac{\mathbf{b_2'G^*}}{\sqrt{\mathbf{b_2'P^*b_2}}}$

But, selection in stage 1 not only reduces variances but also introduces skewness, depending on the correlation between $I_{1:}$ and $I_{2:}$

Accounting for skewness requires integration of multivariate normal distributions, or Monte Carlo simulation.

See Ducroq and Colleau (1986 GSE 18:447) Jopson et al. (2004, Proc. New Zealand Soc. Anim. Prod. 64: 217)

This has been implemented in SelAction

References:

Cunningham (1975), Theor. Appl. Genet. 46:55 Ducrocq and Colleau (1989) Genet. Sel. Evol. 21:185 Xu and Muir (1991) Genetics 129:963 Xu and Muir (1992) Theor. Appl. Genet. 83:451 Xu, Martin, and Muir (1995) J. Anim. Sci. 73:699