

Accuracy of Genomic Prediction

Julius van der Werf

Genomic Prediction: basic idea

To predict a trait EBV at a young age,

good for for: late traits

hard to measure traits

Genomic prediction accuracy

- Derive from the model, e.g. PEV from GBLUP mixed model equations
- Validate with other EBVs or phenotypes
 - Validation population
 - Cross-validation
- Predict in advance based on theory and assumptions about population

Genomic Prediction: basic idea

Illustrating (dis-)similarity of chromosome segments

Genotype information

Father

10100**1**110111**0**01110**0**1110011 01010**0**111000**1**10001**1**0011010

Chromosome segments are passed on

Mother

00010**0**111100**1**010110**0**110011 10101**1**101011**1**111111**1**111110

Progeny

10100**1**110111**0**01110**0**1110011 00010**0**111100**1**01011**0**0110011

Working out haplotypes (phasing)

Filling in the gaps (imputation)

A whole population of haplotypes

Individual

Within a population, members will share chromosome segments We can follow inheritance via SNPs

Degree of sharing can be represented in a genomic relationship (= observed based on SNPs) (similar to genetic relationship = expected based on pedigree)

Genomic Prediction: basic idea

Large diversity of segments → less accuracy

populations of haplotypes

Holstein Friesian, a pig/poultry nucleus

Limited diversity

Long segment sharing

Smaller N_e, longer segment sharing, fewer "effective loci"

Merino sheep, humans

More diversity Short segment sharing Sub populations

Not only recent N_e but also historic N_e is relevant

Genomic prediction accuracy Using Daetwyler et al, 2008

Accuracy² of estimating a random effect = $n / (n+\lambda)$

$$\lambda = V_e / V_a$$

If genome exists of M_e independently segregating 'effective chromosome segments'

And each segemnt has variance VA/ M_{e.} then accuracy of estimating each segment

$$\frac{n}{n+V_e/(V_a/M_e)} = \frac{nV_a}{nV_a+V_eM_e} = \frac{h^2}{h^2+M_e/n}$$

n = nr observations $M_e = effective nr loci$

Depends on

i) Proportion of genetic variance at QTL captured by markers

i) Accuracy of estimating marker effects

Depends on

) Proportion of genetic variance at QTL captured by markers

$$q^2 = M/(M_e + M)$$

Accuracy of estimating marker effects

Depends on

Proportion of genetic variance at QTL captured by markers $q^2 = M/(M_e + M)$ i)

$$q^2 = M/(M_e + M)$$

Depends on marker-QTL LD

Depends on

 M_e = 'effective number of chromosome segments'

i) Accuracy of estimating marker effects

$$r^2_{Qhat} = V_{qhat}/V_q = N/(N+\lambda)$$

 $\lambda = M_e/b.h^2$

Accuracy =
$$\sqrt{(q^2. r_{Qhat}^2)}$$

= $q. r_{Qhat}$

Depends on

i) Proportion of genetic variance at QTL captured by markers

$$b = M/(M_e + M)$$

Depends on marker-QTL LD

Depends on

M_e = 'effective number of chromosome segments'

$$M_e = 2N_e Lk/ln(2N_e)$$

or is it...?

i) Accuracy of estimating marker effects

$$V_{qhat}/V_{q} = N/(N+\lambda)$$

 $\lambda = M_{e}/b.h^{2}$

Accuracy =
$$\sqrt{b. V_{qhat}/V_q}$$

Trait heritability = h^2

G = total BV

Q = genetic effects captured by marker(s)

R = residual polygenic effects

After Goddard et al. (2011, JABG 128); notation after Dekkers (2007, JABG 124)

Model for phenotype: P = G + E

Model for BV: G = Q + R

With very many markers

Proportion of genetic variance at QTL captured by markers $q^2 = M/(M_e + M)$ **i**)

$$q^2 = M/(M_e + M)$$

$$q^2 = 1$$

i) Accuracy of estimating marker effects

$$r^2_{Qhat} = V_{qhat}/V_q = N/(N+\lambda) = h^2/(h^2 + M_e/N)$$

 $\lambda = M_e/h^2$ same as Daetwyler

Accuracy =
$$\sqrt{(r^2_{Qhat})}$$

= r_{Qhat}

Current question

With very many markers, e.g. sequence, will we be better of?

What if nr markers >>> nr chromosome segments?

Effective number of chromosome segments

Sample size 2000 Heritability 0.05 Number of chromosome 5 Length of the chromosome 1 Morgan Replicates 100 $M_e = 2N_e Lk/ln(2N_e)$ or is it...?

Ne (=number of generations)	100	1000	5000	Infinity			
	number of QTL = 50000						
average	0.556	0.279	0.148	0.045			
SD	0.055	0.042	0.032				
Me	223	1184	4465	50000			
	Mike's theory						
4NeLk	2000	20000	100000				
2NeLk/log(4NeL)	303	2325	10000				
2NeLk	1000	10000	50000				
2NeLk	1000	10000	50000				
2NeLk/log(NeL)	371	2703	11369				
2NeLk/log(2N _e)	435	3029	12500				
2NeLk/In(NeL)	217	1448	5870				
2NeLk/In(2Ne)	189	1316	5429				

Validating 'Effective number of segments'

Can use actual data on A and G to test this

Compare G and A matrices
$$G - A = D + E$$

D =deviation in relationship at QTL

$$Var(D) = 1/M_e$$

Empirical validation

Wientjes YCJ, Veerkamp RF, Calus MPL (2013) The Effect of Linkage Disequilibrium and Family Relationships on the Reliability of Genomic Prediction. Genetics 193: 621–631.

Erbe M, Gredler B, Seefried FR, Bapst B, Simianer H (2013) A Function Accounting for Training Set Size and Marker Density to Model the Average Accuracy of Genomic Prediction. PLoS ONE 8(12): e81046. doi:10.1371/journal.pone.0081046

Validating 'Genomic Prediction Accuracy'

More data is always good But does it increase accuracy as expected?

x-fold increase in data

What effective population size?

Kijas et al 2012

Sampling?

Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure

Relationship with reference population

Clark et al 2011

Method	Close Ped 0 - 0.25 Genom 0.08 – 0.35	Distant 0 - 0.125 0.08 – 0.26	Unrelated 0 - 0.05 0.08 - 0.16	
BLUP- Shallow pedigree	0.39	0.00	0.00	
BLUP- Deep Pedigree	0.42	0.21	0.04	
gBLUP	gBLUP 0.57		0.34	

Additional accuracy from family info

'baseline accuracy': graphs predict 0.36 for Ne=100, N=1750, h²=0.3

Relatedness matters more if the reference population is smaller

Using a stratified Reference population -populations are not homogeneous

Accuracy of GBV vary total reference population size

comparing 'with' (continuous line) and 'without' (dashed line) information on own herd and relatives.

Nmarkers=12k

Nmarkers = 500k

Contribution of different sources Van der Werf et al, AAABG 2015

Table 1 Value of the various information sources, accuracy of GBV with and without the *flock* and *relatives* information sources² and the relative accuracy difference (diff).

	Value	Value of information source ¹						
<u>N1</u>	breed	flock	relatives	GBV_acc_with	GBV_acc_wo	diff ³		
NE1=1000, N2=400	, N3=50							
2000	16%	52%	21%	0.428	0.220	95%		
5000	31%	39%	15%	0.471	0.318	48%		
10,000	45%	26%	10%	0.528	0.420	26%		
NE1=1000, N2=100	, N3=10							
2000	48%	36%	12%	0.279	0.205	36%		
5000	68%	19%	6%	0.357	0.309	15%		
10,000	79%	11%	4%	0.445	0.414	7%		
NE1=200 , N2=400, I	N3=50							
2000	45%	26%	10%	0.528	0.448	18%		
5000	62%	12%	5%	0.640	0.599	7%		
10,000	72%	5%	2%	0.739	0.718	3%		

¹ Percent decrease in accuracy if this information source was removed.

 $^{^{2}}$ N_{E2} = 50, N_{E3} = 8, Marker density = 50k.

³ Difference between prediction accuracy with and without information from flock and relatives

Conclusions

Theory exists to predict genomic prediction accuracy in advance: depends on nr. effective segments, nr records

- Relies on assumptions regarding effective population size
- Ignores heterogeneity of populations and relationships

