###### The latest version of this IPython notebook is available at http://github.com/jckantor/CBE20255 for noncommercial use under terms of the Creative Commons Attribution Noncommericial ShareAlike License.¶

J.C. Kantor ([email protected])

# Txy and xy Diagrams for Binary Mixtures¶

This IPython notebook illustrates the use of Raoult's Law and Antoine's equations to calculate Txy and xy diagrams for binary mixtures. The video is used with permission from learnCheme.com, a project at the University of Colorado funded by the National Science Foundation and the Shell Corporation.

Initialize the IPython workspace with with default settings for plots.

In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

plt.rcParams.update({'figure.figsize':(10,6)})
plt.rcParams.update({'font.size':12})
plt.rcParams.update({'lines.linewidth':1.6})


## Introduction¶

For a binary mixture at a fixed pressure, the temperature/composition (Tx) diagram plots the equilibrium composition of the liquid and vapor as a function of temperature. -XcTEknC9Aw

In [2]:
from IPython.display import YouTubeVideo

Out[2]:

## Analysis¶

$$P = x_A P_A^{sat}(T) + x_B P_A^{sat}(T)$$

substituting $x_B = 1-x_A$

$$P = x_A P_A^{sat}(T) + (1-x_A) P_B^{sat}(T)$$

then solving for $x_A$ and $y_A$

$$x_A = \frac{P - P_B^{sat}(T)}{P_A^{sat}(T) - P_B^{sat}(T)}$$
$$y_A = x_A\frac{P_A^{sat}(T)}{P}$$

## Plotting the Txy Diagram¶

The calculations in this notebook are for a representative system of two components, acetone and ethanol. We start by creating two functions to estimate vapor pressure for the individual species using Antoine's equation.

In [3]:
# Antoine's equations
A = 'acetone'
B = 'ethanol'

def PsatA(T):
return 10**(7.02447 - 1161.0/(T + 224))

def PsatB(T):
return 10**(8.04494 - 1554.3/(T + 222.65))


For convenience, we create a function that computes the boiling of a pure component given the operating pressure and a function to compute the pure component saturation pressure.

In [17]:
from scipy.optimize import brentq

def Tboil(Psat,P):
return brentq(lambda T: Psat(T) - P,0,100)

print "Normal boiling  point of {:s} is {:4.1f} deg C".format(A,Tboil(PsatA,760))
print "Normal boiling point of {:s} is {:4.1f} deg C".format(B,Tboil(PsatB,760))

Normal boiling  point of acetone is 56.2 deg C
Normal boiling point of ethanol is 78.3 deg C

In [6]:
P = 760

T = np.linspace(Tboil(PsatA,P),Tboil(PsatB,P))

def xA(T):
return (P - PsatB(T))/(PsatA(T)-PsatB(T))

def yA(T):
return xA(T)*PsatA(T)/P

plt.plot(map(xA,T),T,map(yA,T),T)
plt.title('Tx Diagram {:s}-{:s} at {:.1f} [mmHg]'.format(A,B,P))
plt.legend(['Bubble Temperature','Dew Temperature'],loc='best')
plt.ylabel('Temperature [deg C]')
plt.xlabel('x,y Mole Fraction {:s}'.format(A))
plt.xlim(0,1)
plt.grid();


## xy Diagram¶

In [11]:
plt.figure(figsize=(8,8))

plt.plot(map(xA,T),map(yA,T))
plt.axis('equal')
plt.title('xy Diagram {:s}-{:s} at {:.1f} [mmHg]'.format(A,B,P))
plt.xlabel('x liquid phase mole fraction {:s}'.format(A))
plt.ylabel('y vapor phase mole fraction {:s}'.format(A))
plt.xlim(0,1)
plt.ylim(0,1)
plt.grid();


## Lever Rule¶

In [15]:
P = 760

T = np.linspace(Tboil(PsatA,P),Tboil(PsatB,P))

def xA(T):
return (P - PsatB(T))/(PsatA(T)-PsatB(T))

def yA(T):
return xA(T)*PsatA(T)/P

plt.plot(map(xA,T),T,map(yA,T),T)
plt.title('Tx Diagram {:s}-{:s} at {:.1f} [mmHg]'.format(A,B,P))
plt.legend(['Bubble Temperature','Dew Temperature'],loc='best')
plt.ylabel('Temperature [deg C]')
plt.xlabel('x,y Mole Fraction {:s}'.format(A))
plt.xlim(0,1)
plt.grid();

Te = np.mean(T)
xe = xA(Te)
ye = yA(Te)
ze = 0.4*xe + 0.6*ye

ax = plt.axis()
plt.plot([ze,ze],[ax[2],Te],'r')
plt.plot([xe,ye],[Te,Te],'r')
plt.plot([xe,xe],[ax[2],Te],'r--',[ye,ye],[ax[2],Te],'r--')

plt.text(xe+0.01,ax[2]+0.2,'x = {:.2}'.format(xe))
plt.text(ye+0.01,ax[2]+0.2,'y = {:.2}'.format(ye))
plt.text(ze+0.01,ax[2]+1.5,'z = {:.2}'.format(ze))

plt.annotate('', (xe,Te+1), (ze,Te+1), arrowprops={'arrowstyle':'<->'})
plt.annotate('', (ze,Te+1), (ye,Te+1), arrowprops={'arrowstyle':'<->'})

plt.annotate('    L/V = (y-z)/(z-x)',(ye,Te))

plt.plot(xe,Te,'bo',ms = 10)
plt.plot(ye,Te,'go',ms = 10)
plt.plot(ze,Te,'ro',ms = 10)

Out[15]:
[<matplotlib.lines.Line2D at 0x109a10110>]

## Exercises¶

1. Modify this notebook to create Txy and xy diagrams for an acetaldehyde/ethanol mixture. Create an x-y diagram, and compare to the experimental data avaiable here:

S. G. D'Avila and R. S. F. Silva, "Isothermal vapor-liquid equilibrium data by total pressure method. Systems acetaldehyde-ethanol, acetaldehyde-water, and ethanol-water," Journal of Chemical & Engineering Data, vol. 15 (3), 421-424, 1970.

In [ ]: