The latest version of this IPython notebook is available at https://github.com/jckantor/Airbag-Design-for-Cargo-Airdrop under the MIT License.

J.C. Kantor ([email protected])

In [1]:
#Initializations
from IPython.core.display import HTML
HTML(open("../styles/custom.css", "r").read())
Out[1]:

Bibliography

Alizadeh, M., Sedaghat, A., & Kargar, E. (2014). Shape and Orifice Optimization of Airbag Systems for UAV Parachute Landing. International Journal of Aeronautical and Space Sciences, 15(3), 335-343.

Benney, R. J., Krainski, W. J., Onckelinx, P., Delwarde, C., Mueller, L., & Vallance, M. (2006). NATO Precision Airdrop Initiatives and Modeling and Simulation Needs. ARMY NATICK SOLDIER CENTER MA.

Browning, A. C. (1964). A theoretical approach to air bag shock absorber design. HM Stationery Office.

Do, S. (2011). An airbag-based crew impact attenuation system for the Orion crew exploration vehicle (Doctoral dissertation, Massachusetts Institute of Technology).

Do, S., & de Weck, O. (2012). A personal airbag system for the Orion Crew Exploration Vehicle. Acta Astronautica, 81(1), 239-255.

Hirth, A., Haufe, A., & Olovsson, L. (2007). Airbag simulation with LS-DYNA past-present-future. presentation in, (6).

Lee, C. K. (1988). Performance of a Single Balloon-Skirt Airbag in Vertical Drops (No. NATICK/TR-88/059). ARMY NATICK RESEARCH DEVELOPMENT AND ENGINEERING CENTER MA.

Lee, C. K. (1992). Methods for improved airbag performance for airdrop (No. NATICK/TR-93/002). ARMY NATICK RESEARCH DEVELOPMENT AND ENGINEERING CENTER MA.

Nykvist, W. (1981). Balloon-Skirt Airbags as Airdrop Shock Absorbers: Performance in Vertical Drops (No. NATICK/TR-82/026). ARMY NATICK RESEARCH AND DEVELOPMENT CENTER MA.

Potter, J. A., & Giles, L. (2006). The United Kingdom's Air Drop Capability. MINISTRY OF DEFENCE LONDON (UNITED KINGDOM).

Pua, Q., Zhena, Y., & Ruib, S. (2015). Research on Airbags Landing System for Airborne Vehicle Airdrop. Journal of Information and Computational Sciences, 12(5), 2035-2042.

Rosato, N. P. (1999). Passive airbag vent control valve study (No. NATICK-TR-00-010). ARMY NATICK RESEARCH DEVELOPMENT AND ENGINEERING CENTER MA.

Ross, E. W. (1987). Control Systems for Platform Landings Cushioned by Air Bags (No. NATICK/TR-88/021). ARMY NATICK RESEARCH DEVELOPMENT AND ENGINEERING CENTER MA.

Taylor, A. P., Benney, R., & Bagdonovich, B. (2001). Investigation of the application of airbag technology to provide a soft landing capability for military heavy airdrop. AIAA, 2046(2001), 284-292.

Wang, H. Y., Hong, H. J., Li, J. Y., & Rui, Q. (2013). Study on Multi-objective Optimization of Airbag Landing Attenuation System for Heavy Airdrop. Defence Technology, 9(4), 237-241.

Wang, H., Hong, H., Hao, G., Deng, H., Rui, Q., & Li, J. (2014). Characteristic verification and parameter optimization of airbags cushion system for airborne vehicle. Chinese Journal of Mechanical Engineering, 27(1), 50-57.

Wen, J., Li, B., & Yang, Z. (2010). Study on cushioning characteristics of soft landing airbag with elastic fabric. International Journal of Applied Electromagnetics and Mechanics, 33(3), 1535-1545.

In [ ]: