Geodesic Segmentation¶

Important: Please read the installation page for details about how to install the toolboxes. $\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\Zz}{\mathcal{Z}}$ $\newcommand{\Ww}{\mathcal{W}}$ $\newcommand{\Vv}{\mathcal{V}}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\NN}{\mathcal{N}}$ $\newcommand{\Hh}{\mathcal{H}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\Ee}{\mathcal{E}}$ $\newcommand{\Cc}{\mathcal{C}}$ $\newcommand{\Gg}{\mathcal{G}}$ $\newcommand{\Ss}{\mathcal{S}}$ $\newcommand{\Pp}{\mathcal{P}}$ $\newcommand{\Ff}{\mathcal{F}}$ $\newcommand{\Xx}{\mathcal{X}}$ $\newcommand{\Mm}{\mathcal{M}}$ $\newcommand{\Ii}{\mathcal{I}}$ $\newcommand{\Dd}{\mathcal{D}}$ $\newcommand{\Ll}{\mathcal{L}}$ $\newcommand{\Tt}{\mathcal{T}}$ $\newcommand{\si}{\sigma}$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$

This tour explores the use of Fast Marching methods for image segmentation.

In [2]:
addpath('toolbox_signal')


Segmentation Using Geodesic Ball¶

It is possible to extract an object by growing a geodesic ball.

In [3]:
n = 256;
name = 'cortex';


Display.

In [4]:
clf;
imageplot(M);


Starting point of the grodesic ball.

In [5]:
pstart = [154;175];


Choose a metric that is minimal for value of the image close to pstart.

In [6]:
W = abs(M-M(pstart(1),pstart(2)));
W = rescale( max(W,0.03), 0.01,1).^2;


Compute the Fast Marching from the center.

In [7]:
clear options;
options.nb_iter_max = Inf;
options.end_points = [];
[D,S,Q] = perform_fast_marching(1./W, pstart, options);


Exercise 1

Display geodesic balls {x \ M(x)<T} for various T.

In [8]:
exo1()

In [9]:
%% Insert your code here.


Segmentation Using Voronoi Diagrams¶

It is possible to perform the segmentation by using an edge stopping metric, and Vornoi diagram for several seeds.

In [10]:
mu = 2;
d = sqrt( sum( grad(perform_blurring(M,mu)).^2, 3) );
d = perform_blurring(d,mu);


Edge stopping metric.

In [11]:
W = rescale( min(d,0.15), 0.01,1).^2;


Display the metric.

In [12]:
clf;
imageplot(W);


Starting points.

In [13]:
pstart = [[30;30] [139;86] [158;170] [128;134] [124;122]];


Perform propagation.

In [14]:
options.nb_iter_max = Inf;
options.end_points = [];
[D,S,Q] = perform_fast_marching(1./W, pstart, options);


Display Voronoi diagrams.

In [15]:
clf;
imageplot(Q);
colormap(jet(256));


Exercise 2

Display the level sets.

In [16]:
exo2()

In [17]:
%% Insert your code here.