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Abstract—In this report, we summarize our findings for the
first project of the machine learning course taught at EPFL
[1] . The goal of the project is the computation as well as
the error estimation of predictions of a classification dataset
of the Higgs boson by the CERN [2] . Key aspects of the
project are exploratory data analysis, feature processing, the
implementation of several regression and classification machine
learning methods and the comparison of different models using
cross-validation.

INTRODUCTION

The problem that we are asked to solve is about classify-
ing particles into two classes: {Higgs boson, Other}. More
specifically, we are facing a binary classification problem.
Given a huge dataset for training our models, we need to ap-
ply both regression and classification methods on it. Further
analysis and plots can be found on project1.ipynb

I. DATA ANALYSIS & PROCESSING

In this section, we perform a data analysis on the given
dataset and we describe our preprocessing steps.

A. Data Description

Our dataset consists of 250’000 measurements, each with
a binary class which represents its type and 30 more features.
By visualizing a simple plot, we realized that the classes
in the dataset are skewed, having approximately 160’000
particles in class b and 90’000 particles in class s. Also,
by visualizing each feature with respect to its class we
searched for features that give us zero profit in predicting
the class of the particle. However, none of the features could
be eliminated for sure (since we do not know what these
features represent in reality). All the aforementioned plots
can be seen in our notebook project.

B. Rank Deficiency

By running the matrix_rank() function of the numpy
library we managed to get the rank of our training data.
Because the rank of this matrix is equal to the number of
features we claim that our data is not ill-conditioned [3] ,
as the features are not linearly dependent to each other. As
we will see later, since we have a very good rank on our
training data set, we expect to get a very good score on the
Least Squares using normal equations method.

C. Standardization

We applied standardization on the training and test
datasets before doing any further work. In addition to reduc-
ing the data on each feature to zero mean and unit variance
as was done in the provided standardization function, we
also handled the values which could not be measured (those
with value -999) by replacing them by the mean value of
their feature. The mean was of course calculated without
including these outliers.

D. Feature Elimination

Some features are more important than others to the model
accuracy. We tried to get an evaluation of the importance of
each feature by computing the feature’s usefulness, namely
their correlation with the class labels y. We obtain the graph
on the left side of Fig. 1 (where a coefficient close to 1 or
-1 denotes an high correlation, and 0 no correlation).

Figure 1. left: feature’s correlation with y, right:score boxplot

Then, we chose a threshold (in absolute value) above
which we kept the features. In our case, we observed that
feature selection doesn’t give us better results. However, it
is possible to get similar results with fewer features which
actually makes our computations cheaper.

E. Quadradic Space

We managed to compute quadratic decision boundaries.
However, this method forced us to handle a lot of features
(D(D + 3)/2 for D features). As we couldn’t manipulate
this in a reasonable time, we proceeded to feature selection
before transforming the data. As we got better results using
other models, we didn’t keep this solution. A concrete
example is given in the code.

F. Polynomial Expansion

The main feature selection process we ended up using
for the project is based on polynomial basis functions. In



order to put more weight on more significant features, we
added successive powers of each feature to the dataset,
up to a certain degree that we deemed optimal. The way
we selected the optimal degree for each feature was the
following: for each feature in turn, we added to the original
dataset polynomial expansions of the examined feature, up to
a certain predefined maximal degree. Then we chose the best
degree based on the results the partial expansion gave us.
Knowing the best degree for each of the individual features,
we then built our final dataset by adding the optimal number
of polynomial bases for each feature in turn. During that
step, some features for which the optimal degree we obtained
was 0 were effectively deleted from the dataset, thereby
achieving a similar result as feature elimination would have.

II. ML METHODS

In this section we perfom an analysis on our implemented
regression and classification methods [4] . Before doing that,
we also need to mention how we performed our model
selection.

A. Model Selection

Once our dataset was ready we proceeded to find the
method yielding the best results for our dataset. To do so, we
selected several potential values for the various parameters
of the regression and classification methods. We ran this
step only varying γ and λ, as the initial weight vector
doesn’t seem to play a significant role and the number of
iterations has no ”optimal” value as it represents only a
tradeoff between result precision and running time.

In order to avoid overfitting on our training data, we
implemented 5-fold cross validation to obtain an unbiased
estimate of the obtained score, and that way the best method
and parameter selection for our task. In our code, the
cross_validation() function is a generic one which
is called by each of the test_## functions based on the
method we wanted to test.

B. ML Regression Methods

To apply regression, we have implemented the following
methods:

1) Least Squares using Gradient Descent: The crucial
aspect of this method is the choice of the step size γ and
the choice of the convergence criterion. Ideally, we should
select a step-size γ that minimizes f(xk − γ∇f(xk)) with
γ > 0 and k being the iteration number. However, this
computation is very expensive and we rather choose an non-
optimal, easier to compute step size. We finally chose a γ
for which we observed fast convergence on our dataset. We
could also have set a threshold (i.e 10−5) in order to find out
where we should stop iterating but this was not necessary
for this project.

2) Least Squares using Stochastic Gradient Descent:
The aforementioned statements are also true for stochastic
gradient descent. The only difference is that we now pick
only one random point at each iteration and thus we might
let the algorithm do more iterations until it converges. Since
the computational cost is much cheaper now, we got faster
convergence even when doing more iterations.

3) Least Squares using normal equations: Given that the
input matrix X is not ill-conditioned, we are able to apply
least squares using normal equations. Least squares is going
to give us the final weight vector really fast, and we also
expect to get good score because of the linear independence
of the features. Indeed, we managed to achieve a score of
81% (applying polynomial expansion up to degree 12).

4) Ridge Regression using normal equations: Ridge re-
gression is a ”normalized” least squares and we expected
to get the same good results as least squares. Indeed, we
got a slightly better score than least squares with a lambda
close to 0 (10−6) meaning that these two methods are almost
equal. The most important aspect of ridge regression is the
choice of λ which was found by cross validation. We varied
the value of λ between 10−9 and 103 over 200 values and
chose the λ resulting in the smallest averaged test RMSE.

C. ML Classification Methods

To apply classification, we have implemented the follow-
ing methods:

1) Logistic Regression using Gradient Descent: Our
implementation can do a descent classification for small
datasets, however for the full dataset we faced some nu-
merical issues due to the very big values that are created
during the process.

2) Regularized Logistic Regression using Gradient De-
scent: The same problem occurs in that function as well.
However, if we could have overcomed the numerical issues
we would expect to get a slightly better score than ridge
regression.

III. PERFORMANCE ANALYSIS

In this report, we analyzed a binary classification dataset
with both regression and classification methods. The data
preperation and preprocessing played a crucial role in order
to get good results. For the regression methods, we got our
best score (81.396%) from Ridge Regression (λ = 10−6).
The λ was pretty small meaning that least squares is also
a good method and almost equal to ridge regression. For
the classification methods, we were expected to get slightly
better results than the regression methods but since we had
some numerical issues in our implementation, we did not
manage to do so. Finally, by ploting our boxplot in Fig. 1,
we claim that we can get almost the same score for different
test-sets.
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