using Plots, ComplexPhasePortrait, ApproxFun, SingularIntegralEquations, OscillatoryIntegrals
import ApproxFun: UnionDomain
gr();
Dr. Sheehan Olver
The Wiener–Hopf method is an approach for solving integral equations of the form λu(x)+∫∞0K(x−t)u(t)dt=f(x)for0≤x<∞.
In this course, we will only consider K(x)=e−γ|x|, though the methodology translates to other choices of K.
Before discussing problems on the half line, we consider problems on the whole line: λu(x)+∫∞−∞K(x−t)u(t)dt=f(x)for−∞<x<∞.
Recall the Fourier transform of a function (using s so I don't get confused with K): ˆK(s)=FK(s)=∫∞−∞K(t)e−istdt
We are interested in the Fourier transform of the convolution term ∫∞−∞K(x−t)u(t)dt
Consider the kernel K(x)=e−γ|x|. Then we have ˆK(s)=∫∞−∞K(t)e−istdt=∫0−∞e(γ−is)tdt+∫∞0e(−γ−is)t=1γ−is−1−γ−is=2γγ2+s2
γ = 2.0
Γ = ApproxFun.UnionDomain((-Inf .. 0) , (0 .. Inf)) # Line split in two
K = Fun(x -> exp(-γ*abs(x)), Γ)
K̂ = s -> fourier(K, -s) # magic routine for Fourier transforms
K̂(2.0) - 2γ/(γ^2+2.0^2)
-3.553823901825126e-13 - 8.326672684688674e-17im
Consider a simple RHS like f(x)=1x2+a2
Remark The Fourier transform of smooth functions that exponentially decay are smooth functions that exponentially decay. When we only have algebraic decay, that indicates that the Fourier transform is smooth apart from at 0.
a = 2.0
f = Fun(x -> 1/(x^2 + a^2), Γ)
f̂ = s -> fourier(f, -s)
f̂(0) - π/a
9.594547378810603e-13
f̂(2.0) - (π*exp(-2.0*a)/a)
1.5959455978986625e-16 + 0.0im
f̂(-2.0) - (π*exp(-2.0*a)/a)
1.5959455978986625e-16 + 0.0im
So we can now solve the integral equation λu(x)+∫∞−∞K(x−t)u(t)dt=f(x)for−∞<x<∞.
λ = 1.0
û = π/a*Fun(s -> exp(-a*abs(s))*(γ^2 + s^2)/(λ*(γ^2 + s^2) + 2γ), Γ)
u = Fun(x -> fourier(û, x), Γ)/(2π)
plot(-10.0:0.1:10.0, u)
λ*u(0.0) + sum(u*K) - f(0.0)
1.894040480010517e-13 + 6.805472279452433e-19im
x =2.0
λ*u(x) + sum(Fun(t -> K(x-t)*u(t), UnionDomain(-Inf .. x, x .. Inf))) - f(x)
2.3935020632137594e-12 + 1.5832361733373612e-15im
Working out the analytic formula for this example takes a lot more work and involves other special functions, and is outside the scope of the course.