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1 A slightly different derivation of the enstrophy conservation
with 5 # 0

An equivalent approach to derive the enstrophy conservation with non-zero § is to write the
meridional PV flux as the divergence of an Eliassen-Palm vector (e.g. Vallis 2006)

vq=V-FE, (1)
where
Ed§f5<vz—u2—(f°) ﬁz)z—uvg—kvﬁk. (2)
Using FE, the equation for enstrophy density is
Ohi®+J(¥,5¢%°) + BV-E =0. (3)
Integrating over the volume
12dV+B/ 0] Tas=o. (4)
dt ﬁr—’
Ed

Now take the QGPV equation evaluated at z* and cross-multiply with the boundary conditions

to obtain q
dt/ iﬁids+ﬂ/ﬁivids—o (5)
Eliminating the 8 terms between and ( . we obtain the enstrophy conservation law
4 2dV — [ ¢t9T — ¢ 9 dS| =0, (6)

which corresponds to M (14)—(15)F_-I

2 Approximation B: energy and enstrophy nonconservation

The total energy is approximation B is in the form

EEY Ey+ E, + By, . (7)

'Manuscript equations are denoted M #.



The three terms in are

o=} [} [\wﬁ}%({gﬁ(wﬁ)z] deENZ/; [)%fﬂiéi] as, ®
n=0
E, = / 3 [!Vo-|2+ ({3)2(@0—)2] av, 9)
and
1 5, fozsz} =3 [ninas
o h/[wN va+(N) 8,68 8.0| dV ;O/aAqsds (10)

We form the energy equation by deriving evolution equations for each term in separately.
First, we multiply the modal equations M (54) by —¢,, integrate over the horizontal surface,
and sum on n, to obtain

dE¢ ZZ/PHPS% 0, Dsds dV+BZ/¢n6 FndS. (11)

To obtain the evolution of surface contribution to the total energy @D we differentiate surface
inversion relationship M (45) with respect to time, and then multiply by — o, integrate over the
volume, and combine with the boundary conditions, to obtain

Z/ [Pt o) (¢, 9F) — pro™d (¢, 97)] dS. (12)

To obtain the evolution of the cross-term Ey, we first form an equation for &, by combining
the boundary conditions

N
at&nz—%z PP A0 (6, 9F) = P A1 (6, 97)]

+ ot AN (0, 907) = Epp AN (07,97) (13)

a“h—‘

where the n’th mode Helmholtz operator is
Ap A K2 (14)

Now multiply by Anqvbn, integrate over the horizontal surface, and sum over n, to obtain

Z/An%athands_ ZZ/ PP Andn ALl (g)m,w)

n=0m=0
PP ondns ) (G 07) 145+ [ [t B0dats S (o7 07)
Andn syt (0_, 97)]ds. (15)
The linear operator A, is self-adjoint so that
/AHIJ(A,B)AnCdS: /CJ(A, B)dS. (16)



Hence the double sum terms vanish by skew-symmetry of the Jacobian, and we are left with

N
> / AnnOr hondS = + / [P dnd (0F,97) = pydnd (07,97) ]dS, (17)
n=0
We then multiply the modal equations M (54) by —h &,, and add it to — to obtain
dE N N N y 5 y 5
=33 Zne [0 (0 28.) a5 = [ [Pl (07, 07) — prdd (07, 07) 10
n=0m=0 s=0
N N y N y
+3°% / pupstnd (7, 865 ) AV + 5 / FnDbndS. (18)
n=0 s=0 n=0
Adding , , and we finally obtain the energy equation in approximation B
dEB N N 5 y N N N y y
=20 / PuPs@nd (0, A )dV + > >N " B / Fnd(Oms Dsds) hdS
n=0 s=0 m=0n=0 s=0
N N }
+> Z/pnps&nJ(a, Nsgs)dV . (19)
n=0 s=0

2.0.1 The simplest model

The crudest approximation with non-zero surface buoyancy considers a barotropic interior dy-
namics (N = 0): ¢ = §o and ¢& = ¢o. Notice that

2t

/Udz:h&o. (20)

Hence, the last term on the right-hand-side of vanishes identically. Moreover, the first and
second terms on the right-hand-side of cancel out because =ggg = 1. Thus, this simplest
model conserves energy. The interior equation is

Aedo + I (o + 0, Go) + B0 (¢o + 50) =0, (21)

where

Aézo = qo and Aoy = —% (19+ - 29—) . (22)

The boundary conditions are
= +J (g0 + 0 ,9F) = 0. (23)

2.0.2 An example of energy non-conservation

As described in appendix A of Rocha et al., with richer interior dynamics, approximation B
does not conserve energy. The simplest example with sheared interior dynamics is N = 1 with
constant stratification: qg’ = Nodo + V2 A1y cos(mz) and ¢& = ¢o + V2 ¢y cos(nz). This is
the “two surfaces and two modes” model of Tulloch & Smith (2009). The only non-zero entries
of the interaction tensor are Zggg = Zg11 = =101 = =110 = 1. Using this, and noticing that

P2

Po P1 = P1 and P1P1 = po + ok (24)

the energy equation becomes, after many cancellations,



dEP _ J(51,4 L J(51,52)|dS 25
T [9251 (01,q1) — 5@ (01,02)| dS, (25)
where we considered = h = 1 for simplicity. The choice made in appendix A of Rocha et al.

is Aqdy = A¢1, where X is a constant, so that the first term on the right-hand-side of is
identically zero. As for the surface streamfunction, we choose
cosh (z + 1)

n cos
o= ———>COST
sinh 1 sin

h
f sinx . (26)

Some useful intermediate results are

0
2
&1 :/ piodz = \fQ (cosz —siny) , (27)

1 147
and . /s
2
Fg = /_1 paodz = 152 (cosx +siny) . (28)
Thus,
—4
J(51,52):msinx COS Y . <29)

Using these results leads to the energy non-conservation results M (A10).

Enstrophy

To obtain an enstrophy equation for approximation B, we multiply the interior equations M (54)
by An¢, and integrate over the surface to obtain

N Y N
d (Anﬁbn)Q v 7 _
T n; / S - 5;) / ApndpdndS = 0. (30)
The enstrophy

C
(Bndn)? g
ol (31)
%/

is conserved with 8 = 0. For non-zero 3, we attempt to obtain a conservation law by eliminating
the S—term. First we form an equation for A, &, by combining the boundary conditions

WDy — % i Gn [(p;lLJ (U+ + p;anzuﬁm,ﬁJr) - p,J (O'_ + pr_,lqvﬁm ) 19‘) ] =0. (32)

We then cross-multiply with the modal equations M (54), integrate over the surface S, and
sum on n, the resulting equation with to eliminate 8. The final result is

N N N N
o Z Z ZEmnS / TAVY N (5m > As&s) ds — Z % / ApGnPrpnd (O' s ASQZV53> dv
m=0n=0 s=0 n=0
+ 3 ENJ ENJ din [pZJ (0+ i+ p%ém,w) — P, (cr‘ + p;z@m,ﬁ‘) ] . (33)
n=0m=0



2.0.3 The simplest model
For the most crude truncation becomes

(i(A0;O)2 . % (194- _ 19—) Aoéods —
- /(joJ (30,0 —97)dS + /AOJSU 1 0%) ~3(o=.07) ]as. (34)

The right-hand-side of is generally non-zero. We can always choose an initial condition for
which enstrophy is guaranteed to grow or decay. Choosing

cosh [z + 1] cosh[2(z + 1)]
= _—_— S 2
7 sinhl oY + sinh 2 sy (35)
where obtain
9 = cosz + 2cos2y and 9 =0, (36)
and
1
o9 = cosT + 5 cos 2y. (37)
If we choose
Jo = sinzsin 2y, (38)
we obtain
a5 Lyt 3odS = coth 1 — - coth2 — > (39)
at 2~ wY G =0 9 <0 1

after integrating over one period in both directions. Hence enstrophy in the form of M (15) is
not conserved in this simplest model, and we conclude that, with non-zero 3, enstrophy is not
conserved in approximation B.

3 Approximation C: enstrophy nonconservation

Enstrophy

To obtain an enstrophy conservation for approximation C, we multiply the modal equations M
(57) by ¢y, integrate over the surface, and sum on n, to obtain

d N qug N .
& 7;) / ods - BHZ:% / A& nOpthndS = 0. (40)
With 8 = 0 the enstrophy
N (jQ
> / o (41)
n=0

is conserved. For non-zero § we form an equation for A, &, by combining the boundary condi-
tions

OrDnln — 4 ZN: P P (d?m,W) — Py P (Jﬁmﬂ?’) =0. (42)

m=0



We then cross-multiply with the modal equations, integrate over the surface, sum on n,
and combine with to eliminate (8

N N N

d N ng o
G [ a0ads == 333 [ Entsaad (4. )
n=0

m=0n=0 s=0
+ zN: zN: i /dnpipm (% 9") = Gupr P (V9 ) - (43)
m=0n=0

The right-hand-side of is only zero in very special cases.

3.0.4 The simplest model

Consider the most crude truncation (N = 0). Because Zgpo0 = 1 and pg = 1, the terms on
the second and third lines of cancel each other, ensuring conservation of enstrophy with
non-zero 3

N

d 2
S [ B —th (9" —v7) ds=o. (44)

n=0

This simplest model is a very special case in which the following buoyancy variance

d s [ (9 —9)?
&7;)/2 =0, (45)

and the enstrophy

N v
d (Adho)?
— =0, 46
DN 46)
n=0
are conserved. The enstrophy conservation follows directly from and and the
inversion relationship
o = Do + LW+ —97) (47)
q0 0 + I .
In general, however, one cannot construct invariants analogous to and , and the system
does not conserves enstrophy with non-zero 5.
3.0.5 An example of enstrophy nonconservation

Consider the simplest model with interior shear (N = 1). With constant buoyancy frequency we
obtain, after many cancellations,

32 ‘jQ’%qu“nAn&ndS:—;/qﬁJ (&wﬁ—'ﬁ‘) dS =
n=0

/ (0 —97) (121 (A — wQ)il) s + 2\/5/19+J (zzl, 19—) ds, (48)

where the last equality follows from using the inversion relationship.

We construct an example in which enstrophy is not conserved with non-zero 3. For simplicity
we choose 151 = sin x so that the first integral on the second row of vanishes identically. As
for the surface fields, we choose

9t =cosz cosy and ¥ =siny. (49)



All fields are periodic with same period. Integrating over one period we obtain

/19+J 1,0 dS— ;Ao. (50)

Thus enstrophy, in a form analogous to M (15), is not conserved in this simple example. We
therefore conclude that enstrophy is not generally conserved in approximation C.
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