Algebra details and supplementary materials for "On Galerkin approximations for the quasigeostrophic equations" (submitted to JPO)

Cesar B Rocha, William R. Young, and Ian Grooms

March 24, 2015

1 A slightly different derivation of the enstrophy conservation with $\beta \neq 0$

An equivalent approach to derive the enstrophy conservation with non-zero β is to write the meridional PV flux as the divergence of an Eliassen-Palm vector (e.g. Vallis 2006)

$$vq = \nabla \cdot \boldsymbol{E}, \tag{1}$$

where

$$\boldsymbol{E} \stackrel{\text{def}}{=} \frac{1}{2} \left(v^2 - u^2 - \left(\frac{f_0}{N} \right)^2 \vartheta^2 \right) \hat{\boldsymbol{i}} - u v \hat{\boldsymbol{j}} + v \vartheta \hat{\boldsymbol{k}} . \tag{2}$$

Using E, the equation for enstrophy density is

$$\partial_t \frac{1}{2} q^2 + J\left(\psi, \frac{1}{2} q^2\right) + \beta \nabla \cdot \boldsymbol{E} = 0.$$
 (3)

Integrating over the volume

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{1}{2} q^2 \, \mathrm{d}V + \beta \int \underbrace{\left[\partial_x \, \psi \vartheta\right]_{z^-}^{z^+}}_{\mathbf{E}\hat{\boldsymbol{n}}} \, \mathrm{d}S = 0. \tag{4}$$

Now take the QGPV equation evaluated at z^{\pm} and cross-multiply with the boundary conditions to obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \int q^{\pm} \vartheta^{\pm} \, \mathrm{d}S + \beta \int \vartheta^{\pm} v^{\pm} \, \mathrm{d}S = 0.$$
 (5)

Eliminating the β terms between (4) and (5) we obtain the enstrophy conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\int \frac{1}{2} q^2 \, \mathrm{d}V - \int q^+ \vartheta^+ - q^- \vartheta^- \, \mathrm{d}S \right] = 0, \qquad (6)$$

which corresponds to M (14)-(15).

2 Approximation B: energy and enstrophy nonconservation

The total energy is approximation B is in the form

$$E_{\rm N}^B \stackrel{\rm def}{=} E_{\phi} + E_{\sigma} + E_{\phi\sigma} \,. \tag{7}$$

 $^{^1{\}rm Manuscript}$ equations are denoted M #.

The three terms in (7) are

$$E_{\phi} = \frac{1}{h} \int \frac{1}{2} \left[\left| \nabla \phi_{\mathcal{N}}^{B} \right|^{2} + \left(\frac{f_{0}}{N} \right)^{2} \left(\partial_{z} \phi_{\mathcal{N}}^{B} \right)^{2} \right] dV = \sum_{n=0}^{N} \int \frac{1}{2} \left[\left| \nabla \check{\phi}_{n} \right|^{2} + \kappa_{n}^{2} \check{\phi}_{n}^{2} \right] dS, \qquad (8)$$

$$E_{\sigma} = \int \frac{1}{2} \left[|\nabla \sigma|^2 + \left(\frac{f_0}{N} \right)^2 (\partial_z \sigma)^2 \right] dV, \tag{9}$$

and

$$E_{\phi\sigma} = \frac{1}{h} \int \left[\nabla \phi_{N}^{B} \cdot \nabla \sigma + \left(\frac{f_{0}}{N} \right)^{2} \partial_{z} \phi_{N}^{B} \partial_{z} \sigma \right] dV = \sum_{n=0}^{N} \int \breve{\sigma}_{n} \triangle_{n} \breve{\phi}_{n} dS.$$
 (10)

We form the energy equation by deriving evolution equations for each term in (7) separately. First, we multiply the modal equations M (54) by $-\phi_n$, integrate over the horizontal surface, and sum on n, to obtain

$$\frac{\mathrm{d}E_{\phi}}{\mathrm{d}t} = \sum_{n=0}^{N} \sum_{s=0}^{N} \int \mathsf{p}_{n} \mathsf{p}_{s} \breve{\phi}_{n} \mathsf{J} \left(\sigma, \triangle_{s} \breve{\phi}_{s} \right) \mathrm{d}V + \beta \sum_{n=0}^{N} \int \breve{\phi}_{n} \partial_{x} \breve{\sigma}_{n} \mathrm{d}S. \tag{11}$$

To obtain the evolution of surface contribution to the total energy (9) we differentiate surface inversion relationship M (45) with respect to time, and then multiply by $-\sigma$, integrate over the volume, and combine with the boundary conditions, to obtain

$$\frac{\mathrm{d}E_{\sigma}}{\mathrm{d}t} = -\sum_{n=0}^{N} \int \left[\mathsf{p}_{n}^{+} \sigma^{+} \mathsf{J} \left(\phi_{n}, \vartheta^{+} \right) - \mathsf{p}_{n}^{-} \sigma^{-} \mathsf{J} \left(\phi_{n}, \vartheta^{-} \right) \right] \, \mathrm{d}S.$$
 (12)

To obtain the evolution of the cross-term $E_{\phi\sigma}$ we first form an equation for $\check{\sigma}_n$ by combining the boundary conditions

$$\partial_t \, \breve{\sigma}_n = -\frac{1}{h} \sum_{m=0}^{N} \left[\mathsf{p}_n^+ \mathsf{p}_m^+ \triangle_n^{-1} \mathsf{J} \left(\phi_m, \vartheta^+ \right) - \mathsf{p}_n^- \mathsf{p}_m^- \triangle_n^{-1} \mathsf{J} \left(\phi_m, \vartheta^- \right) \right] + \frac{1}{h} \mathsf{p}_n^+ \triangle_n^{-1} \mathsf{J} \left(\sigma^+, \vartheta^+ \right) - \frac{1}{h} \mathsf{p}_n^- \triangle_n^{-1} \mathsf{J} \left(\sigma^-, \vartheta^- \right) ,$$

$$(13)$$

where the n'th mode Helmholtz operator is

$$\Delta_n \stackrel{\text{def}}{=} \Delta - \kappa_n^2 \,, \tag{14}$$

Now multiply (13) by $\triangle_n \check{\phi}_n$, integrate over the horizontal surface, and sum over n, to obtain

$$\sum_{n=0}^{N} \int \triangle_{n} \check{\phi}_{n} \partial_{t} h \, \check{\sigma}_{n} dS = -\sum_{n=0}^{N} \sum_{m=0}^{N} \int \left[\mathsf{p}_{n}^{+} \mathsf{p}_{m}^{+} \triangle_{n} \check{\phi}_{n} \triangle_{n}^{-1} \mathsf{J} \left(\check{\phi}_{m}, \vartheta^{+} \right) \right] dS + \int \left[\mathsf{p}_{n}^{+} \triangle_{n} \check{\phi}_{n} \triangle_{n}^{-1} \mathsf{J} \left(\sigma^{+}, \vartheta^{+} \right) \right] dS + \int \left[\mathsf{p}_{n}^{+} \triangle_{n} \check{\phi}_{n} \triangle_{n}^{-1} \mathsf{J} \left(\sigma^{-}, \vartheta^{+} \right) \right] dS. \tag{15}$$

The linear operator \triangle_n is self-adjoint so that

$$\int \triangle_n^{-1} \mathsf{J}(A, B) \triangle_n C \, \mathrm{d}S = \int C \, \mathsf{J}(A, B) \, \mathrm{d}S. \tag{16}$$

Hence the double sum terms vanish by skew-symmetry of the Jacobian, and we are left with

$$\sum_{n=0}^{N} \int \triangle_{n} \breve{\phi}_{n} \partial_{t} \, h \breve{\sigma}_{n} dS = + \int \left[\mathsf{p}_{n}^{+} \breve{\phi}_{n} \mathsf{J} \left(\sigma^{+}, \vartheta^{+} \right) - \mathsf{p}_{n}^{-} \breve{\phi}_{n} \mathsf{J} \left(\sigma^{-}, \vartheta^{-} \right) \right] dS, \tag{17}$$

We then multiply the modal equations M (54) by $-h \, \breve{\sigma}_n$ and add it to -(17) to obtain

$$\frac{\mathrm{d}E_{\phi\sigma}}{\mathrm{d}t} = \sum_{n=0}^{N} \sum_{m=0}^{N} \sum_{s=0}^{N} \Xi_{mns} \int \check{\sigma}_{n} \mathsf{J} \left(\check{\phi}_{n}, \triangle_{s} \check{\phi}_{s} \right) \mathrm{d}S - \int \left[\mathsf{p}_{n}^{+} \check{\phi}_{n} \mathsf{J} \left(\sigma^{+}, \vartheta^{+} \right) - \mathsf{p}_{n}^{-} \check{\phi}_{n} \mathsf{J} \left(\sigma^{-}, \vartheta^{-} \right) \right] \mathrm{d}S
+ \sum_{n=0}^{N} \sum_{s=0}^{N} \int \mathsf{p}_{n} \mathsf{p}_{s} \check{\sigma}_{n} \mathsf{J} \left(\sigma, \triangle_{s} \check{\phi}_{s} \right) \mathrm{d}V + \beta \sum_{n=0}^{N} \int \check{\sigma}_{n} \partial_{x} \check{\phi}_{n} \mathrm{d}S.$$
(18)

Adding (11), (12), and (18) we finally obtain the energy equation in approximation B

$$\frac{\mathrm{d}E_{\mathrm{N}}^{B}}{\mathrm{d}t} = \sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \int \mathsf{p}_{n} \mathsf{p}_{s} \check{\phi}_{n} \mathsf{J}(\sigma, \triangle_{s} \check{\phi}_{s}) \mathrm{d}V + \sum_{m=0}^{\mathrm{N}} \sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \Xi_{mns} \int \check{\sigma}_{n} \mathsf{J}(\check{\phi}_{m}, \triangle_{s} \check{\phi}_{s}) h \mathrm{d}S
+ \sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \int \mathsf{p}_{n} \mathsf{p}_{s} \check{\sigma}_{n} \mathsf{J}(\sigma, \triangle_{s} \check{\phi}_{s}) \mathrm{d}V.$$
(19)

2.0.1 The simplest model

The crudest approximation with non-zero surface buoyancy considers a barotropic interior dynamics (N = 0): $q_N^G = \breve{q}_0$ and $\phi_N^B = \phi_0$. Notice that

$$\int_{z^{-}}^{z^{+}} \sigma \, \mathrm{d}z = h \, \breve{\sigma}_0 \,. \tag{20}$$

Hence, the last term on the right-hand-side of (19) vanishes identically. Moreover, the first and second terms on the right-hand-side of (19) cancel out because $\Xi_{000} = 1$. Thus, this simplest model conserves energy. The interior equation is

$$\partial_t \ddot{q}_0 + \mathsf{J} \left(\phi_0 + \breve{\sigma}_0, \ddot{q}_0 \right) + \beta \, \partial_x \left(\phi_0 + \breve{\sigma}_0 \right) = 0, \tag{21}$$

where

$$\triangle \breve{\phi}_0 = \breve{q}_0 \quad \text{and} \quad \triangle \breve{\sigma}_0 = -\frac{1}{\hbar} \left(\vartheta^+ - \vartheta^- \right) .$$
 (22)

The boundary conditions are

$$\partial_t \vartheta^{\pm} + J \left(\phi_0 + \sigma^{\pm}, \vartheta^{\pm} \right) = 0.$$
 (23)

2.0.2 An example of energy non-conservation

As described in appendix A of Rocha et al., with richer interior dynamics, approximation B does not conserve energy. The simplest example with sheared interior dynamics is N=1 with constant stratification: $q_N^G = \triangle_0 \check{\phi}_0 + \sqrt{2} \, \triangle_1 \check{\phi}_1 \, \cos(\pi z)$ and $\phi_N^B = \phi_0 + \sqrt{2} \, \phi_1 \, \cos(\pi z)$. This is the "two surfaces and two modes" model of Tulloch & Smith (2009). The only non-zero entries of the interaction tensor are $\Xi_{000} = \Xi_{011} = \Xi_{101} = \Xi_{110} = 1$. Using this, and noticing that

$$p_0 p_1 = p_1$$
 and $p_1 p_1 = p_0 + \frac{p_2}{\sqrt{2}},$ (24)

the energy equation (19) becomes, after many cancellations,

$$\frac{\mathrm{d}E_1^B}{\mathrm{d}t} = \int \left[\phi_1 \, \mathsf{J} \left(\breve{\sigma}_1 \, , \breve{q}_1 \right) - \frac{1}{\sqrt{2}} \breve{q}_1 \, \mathsf{J} \left(\breve{\sigma}_1 \, , \breve{\sigma}_2 \right) \right] \mathrm{d}S \,, \tag{25}$$

where we considered = h = 1 for simplicity. The choice made in appendix A of Rocha et al. is $\triangle_1 \phi_1 = \lambda \phi_1$, where λ is a constant, so that the first term on the right-hand-side of (25) is identically zero. As for the surface streamfunction, we choose

$$\sigma = \frac{\cosh(z+1)}{\sinh 1} \cos x + \frac{\cosh z}{\sinh 1} \sin x. \tag{26}$$

Some useful intermediate results are

$$\check{\sigma}_1 = \int_{-1}^0 \mathsf{p}_1 \sigma \, \mathrm{d}z = \frac{\sqrt{2}}{1 + \pi^2} \left(\cos x - \sin y \right) \,, \tag{27}$$

and

$$\breve{\sigma}_2 = \int_{-1}^0 \mathsf{p}_2 \sigma \, \mathrm{d}z = \frac{\sqrt{2}}{1 + 4\pi^2} \left(\cos x + \sin y\right) \,. \tag{28}$$

Thus.

$$J(\breve{\sigma}_1, \breve{\sigma}_2) = \frac{-4}{1 + 5\pi^2 + 4\pi^4} \sin x \cos y.$$
 (29)

Using these results leads to the energy non-conservation results M (A10).

Enstrophy

To obtain an enstrophy equation for approximation B, we multiply the interior equations M (54) by $\Delta_n \phi_n$ and integrate over the surface to obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{N} \int \frac{(\triangle_n \check{\phi}_n)^2}{2} \mathrm{d}S - \beta \sum_{n=0}^{N} \int \triangle_n \check{\sigma}_n \partial_x \check{\phi}_n \mathrm{d}S = 0.$$
(30)

The enstrophy

$$\sum_{n=0}^{N} \int \frac{(\triangle_n \breve{\phi}_n)^2}{2} dS, \qquad (31)$$

is conserved with $\beta = 0$. For non-zero β , we attempt to obtain a conservation law by eliminating the β -term. First we form an equation for $\Delta_n \check{\sigma}_n$ by combining the boundary conditions

$$\partial_t \triangle_n \breve{\sigma}_n - \frac{1}{h} \sum_{m=0}^{N} \breve{q}_n \left[\left(\mathsf{p}_n^+ \mathsf{J} \left(\sigma^+ + \mathsf{p}_m^+ \breve{\phi}_m \,, \vartheta^+ \right) - \mathsf{p}_n^- \mathsf{J} \left(\sigma^- + \mathsf{p}_m^- \breve{\phi}_m \,, \vartheta^- \right) \right] = 0 \,. \tag{32}$$

We then cross-multiply (32) with the modal equations M (54), integrate over the surface S, and sum on n, the resulting equation with (30) to eliminate β . The final result is

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{N} \frac{(\triangle_{n} \check{\phi}_{n})^{2}}{2} + (\triangle_{n} \check{\sigma}_{n}) \check{q}_{n} \mathrm{d}S =$$

$$- \sum_{m=0}^{N} \sum_{n=0}^{N} \sum_{s=0}^{N} \sum_{s=0}^{N} \Xi_{mns} \int \triangle_{n} \check{\sigma}_{n} \mathsf{J} \left(\check{\phi}_{m}, \triangle_{s} \check{\phi}_{s} \right) \mathrm{d}S - \sum_{n=0}^{N} \frac{1}{h} \int \triangle_{n} \check{\sigma}_{n} \mathsf{p}_{n} \mathsf{p}_{n} \mathsf{J} \left(\sigma, \triangle_{s} \check{\phi}_{s} \right) \mathrm{d}V$$

$$+ \frac{1}{h} \sum_{n=0}^{N} \sum_{m=0}^{N} \check{q}_{n} \left[\mathsf{p}_{n}^{+} \mathsf{J} \left(\sigma^{+} + \mathsf{p}_{m}^{+} \check{\phi}_{m}, \vartheta^{+} \right) - \mathsf{p}_{n}^{-} \mathsf{J} \left(\sigma^{-} + \mathsf{p}_{m}^{-} \check{\phi}_{m}, \vartheta^{-} \right) \right]. \tag{33}$$

2.0.3 The simplest model

For the most crude truncation (33) becomes

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{(\triangle_0 \check{\phi}_0)^2}{2} - \frac{1}{\hbar} \left(\vartheta^+ - \vartheta^- \right) \triangle_0 \check{\phi}_0 \mathrm{d}S =
- \int \check{q}_0 \mathsf{J} \left(\check{\sigma}_0 , \vartheta^+ - \vartheta^- \right) \mathrm{d}S + \int \triangle_0 \check{\phi}_0 \left[\mathsf{J} \left(\sigma^+ , \vartheta^+ \right) - \mathsf{J} \left(\sigma^- , \vartheta^- \right) \right] \mathrm{d}S.$$
(34)

The right-hand-side of (34) is generally non-zero. We can always choose an initial condition for which enstrophy is guaranteed to grow or decay. Choosing

$$\sigma = \frac{\cosh\left[z+1\right]}{\sinh 1} \cos x + \frac{\cosh\left[2(z+1)\right]}{\sinh 2} \cos 2y, \tag{35}$$

where obtain

$$\vartheta^{+} = \cos x + 2\cos 2y \quad \text{and} \quad \vartheta^{-} = 0, \tag{36}$$

and

$$\sigma_0 = \cos x + \frac{1}{2}\cos 2y. \tag{37}$$

If we choose

$$\ddot{q}_0 = \sin x \sin 2y \,, \tag{38}$$

we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\ddot{q}_0^2}{2} - \frac{1}{\hbar} \vartheta^+ \ddot{q}_0 \mathrm{d}S = \coth 1 - \frac{1}{2} \coth 2 - \frac{3}{4}, \tag{39}$$

after integrating over one period in both directions. Hence enstrophy in the form of M (15) is not conserved in this simplest model, and we conclude that, with non-zero β , enstrophy is not conserved in approximation B.

3 Approximation C: enstrophy nonconservation

Enstrophy

To obtain an enstrophy conservation for approximation C, we multiply the modal equations M (57) by \check{q}_n , integrate over the surface, and sum on n, to obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{N} \int \frac{\check{q}_n^2}{2} \,\mathrm{d}S - \beta \sum_{n=0}^{N} \int \triangle_n \check{\sigma}_n \partial_x \check{\psi}_n \mathrm{d}S = 0.$$
(40)

With $\beta = 0$ the enstrophy

$$\sum_{n=0}^{N} \int \frac{\breve{q}_n^2}{2} \,, \tag{41}$$

is conserved. For non-zero β we form an equation for $\triangle_n \check{\sigma}_n$ by combining the boundary conditions

$$\partial_t \triangle_n \breve{\sigma}_n - \frac{1}{h} \sum_{m=0}^{N} \mathsf{p}_n^+ \mathsf{p}_m^+ \mathsf{J}\left(\breve{\psi}_m, \vartheta^+\right) - \mathsf{p}_n^- \mathsf{p}_m^- \mathsf{J}\left(\breve{\psi}_m, \vartheta^-\right) = 0. \tag{42}$$

We then cross-multiply (42) with the modal equations, integrate over the surface, sum on n, and combine with (40) to eliminate β

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{N} \int \frac{\breve{q}_n^2}{2} + \breve{q}_n \triangle_n \breve{\sigma}_n \, \mathrm{d}S = -\sum_{m=0}^{N} \sum_{n=0}^{N} \sum_{s=0}^{N} \int \Xi_{mns} \triangle_n \breve{\sigma}_n \mathsf{J}\left(\breve{\psi}_m, \breve{q}_s\right)
+ \sum_{m=0}^{N} \sum_{n=0}^{N} \frac{1}{h} \int \breve{q}_n \mathsf{p}_n^+ \mathsf{p}_m^+ \mathsf{J}\left(\breve{\psi}_m, \vartheta^+\right) - \breve{q}_n \mathsf{p}_n^- \mathsf{p}_m^- \mathsf{J}\left(\breve{\psi}_m, \vartheta^-\right).$$
(43)

The right-hand-side of (43) is only zero in very special cases.

3.0.4 The simplest model

Consider the most crude truncation (N = 0). Because $\Xi_{000} = 1$ and $p_0 = 1$, the terms on the second and third lines of (43) cancel each other, ensuring conservation of enstrophy with non-zero β

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{N} \int \frac{\breve{q}_0^2}{2} - \frac{1}{\hbar} \breve{q}_0 \left(\vartheta^+ - \vartheta^-\right) \, \mathrm{d}S = 0.$$
(44)

This simplest model is a very special case in which the following buoyancy variance

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{N} \int \frac{(\vartheta^{+} - \vartheta^{-})^{2}}{2} = 0, \tag{45}$$

and the enstrophy

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{N} \int \frac{(\triangle \tilde{\psi}_0)^2}{2} = 0, \qquad (46)$$

are conserved. The enstrophy conservation (44) follows directly from (45) and (46) and the inversion relationship

$$\check{q}_0 = \Delta \check{\psi}_0 + \frac{1}{h} (\vartheta^+ - \vartheta^-).$$
(47)

In general, however, one cannot construct invariants analogous to (45) and (46), and the system does not conserves enstrophy with non-zero β .

3.0.5 An example of enstrophy nonconservation

Consider the simplest model with interior shear (N = 1). With constant buoyancy frequency we obtain, after many cancellations,

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{1} \int \frac{\breve{q}_{n}^{2}}{2} + \breve{q}_{n} \triangle_{n} \breve{\sigma}_{n} \, \mathrm{d}S = -\frac{1}{h} \int \breve{q}_{1} \mathsf{J} \left(\breve{\psi}_{1}, \vartheta^{+} - \vartheta^{-} \right) \mathrm{d}S =
\int \left(\vartheta^{+} - \vartheta^{-} \right) \mathsf{J} \left(\breve{\psi}_{1}, (\triangle - \pi^{2}) \breve{\psi}_{1} \right) \mathrm{d}S + 2\sqrt{2} \int \vartheta^{+} \mathsf{J} \left(\breve{\psi}_{1}, \vartheta^{-} \right) \mathrm{d}S,$$
(48)

where the last equality follows from using the inversion relationship.

We construct an example in which enstrophy is not conserved with non-zero β . For simplicity we choose $\check{\psi}_1 = \sin x$ so that the first integral on the second row of (48) vanishes identically. As for the surface fields, we choose

$$\vartheta^+ = \cos x \cos y \quad \text{and} \quad \vartheta^- = \sin y.$$
 (49)

All fields are periodic with same period. Integrating (48) over one period we obtain

$$\int \vartheta^{+} \mathsf{J} \left(\check{\psi}_{1}, \vartheta^{-} \right) \mathrm{d}S = \frac{1}{4} \neq 0.$$
 (50)

Thus enstrophy, in a form analogous to M (15), is not conserved in this simple example. We therefore conclude that enstrophy is not generally conserved in approximation C.