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1 A slightly different derivation of the enstrophy conservation
with β 6= 0

An equivalent approach to derive the enstrophy conservation with non-zero β is to write the
meridional PV flux as the divergence of an Eliassen-Palm vector (e.g. Vallis 2006)

vq =∇·E , (1)

where

E
def
= 1

2

(
v2 − u2 −

(
f0
N

)2
ϑ2
)
î− uvĵ + vϑk̂ . (2)

Using E, the equation for enstrophy density is

∂t
1
2q

2 + J
(
ψ, 12q

2
)

+ β∇·E = 0 . (3)

Integrating over the volume

d

dt

∫
1
2q

2 dV + β

∫ [
∂x ψϑ

]z+
z−︸ ︷︷ ︸

E·̂n

dS = 0 . (4)

Now take the QGPV equation evaluated at z± and cross-multiply with the boundary conditions
to obtain

d

dt

∫
q±ϑ± dS + β

∫
ϑ±v± dS = 0 . (5)

Eliminating the β terms between (4) and (5) we obtain the enstrophy conservation law

d

dt

[∫
1
2q

2 dV −
∫
q+ϑ+ − q−ϑ− dS

]
= 0 , (6)

which corresponds to M (14)-(15).1

2 Approximation B: energy and enstrophy nonconservation

The total energy is approximation B is in the form

EBN
def
= Eφ + Eσ + Eφσ . (7)

1Manuscript equations are denoted M #.
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The three terms in (7) are

Eφ = 1
h

∫
1
2

[∣∣∇φBN∣∣2 +
(
f0
N

)2 (
∂zφ

B
N

)2]
dV =

N∑
n=0

∫
1
2

[∣∣∣∇φ̆n∣∣∣2 + κ2nφ̆
2
n

]
dS , (8)

Eσ =

∫
1
2

[
|∇σ|2 +

(
f0
N

)2
(∂zσ)2

]
dV, (9)

and

Eφσ = 1
h

∫ [
∇φBN ·∇σ +

(
f0
N

)2
∂zφ

B
N ∂zσ

]
dV =

N∑
n=0

∫
σ̆n4nφ̆n dS . (10)

We form the energy equation by deriving evolution equations for each term in (7) separately.
First, we multiply the modal equations M (54) by −φ̆n, integrate over the horizontal surface,
and sum on n, to obtain

dEφ
dt

=
N∑
n=0

N∑
s=0

∫
pnpsφ̆nJ

(
σ,4sφ̆s

)
dV + β

N∑
n=0

∫
φ̆n∂xσ̆ndS . (11)

To obtain the evolution of surface contribution to the total energy (9) we differentiate surface
inversion relationship M (45) with respect to time, and then multiply by −σ, integrate over the
volume, and combine with the boundary conditions, to obtain

dEσ
dt

= −
N∑
n=0

∫ [
p+n σ

+J
(
φn, ϑ

+
)
− p−n σ

−J
(
φn, ϑ

−)] dS . (12)

To obtain the evolution of the cross-term Eφσ we first form an equation for σ̆n by combining
the boundary conditions

∂t σ̆n = − 1
h

N∑
m=0

[
p+n p

+
m4−1n J

(
φm, ϑ

+
)
− p−n p

−
m4−1n J

(
φm, ϑ

−)]
+ 1

hp
+
n4−1n J

(
σ+, ϑ+

)
− 1

hp
−
n4−1n J

(
σ−, ϑ−

)
, (13)

where the n’th mode Helmholtz operator is

4n
def
= 4− κ2n , (14)

Now multiply (13) by 4nφ̆n, integrate over the horizontal surface, and sum over n, to obtain

N∑
n=0

∫
4nφ̆n∂th σ̆ndS = −

N∑
n=0

N∑
m=0

∫ [
p+n p

+
m4nφ̆n4−1n J

(
φ̆m, ϑ

+
)

−p−n p−m4nφ̆n4−1n J
(
φ̆m, ϑ

−
) ]

dS +

∫ [
p+n4nφ̆n4−1n J

(
σ+, ϑ+

)
−p−n4nφ̆n4−1n J

(
σ−, ϑ−

) ]
dS . (15)

The linear operator 4n is self-adjoint so that∫
4−1n J(A,B)4nC dS =

∫
C J(A,B)dS . (16)
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Hence the double sum terms vanish by skew-symmetry of the Jacobian, and we are left with

N∑
n=0

∫
4nφ̆n∂t hσ̆ndS = +

∫ [
p+n φ̆nJ

(
σ+, ϑ+

)
− p−n φ̆nJ

(
σ−, ϑ−

) ]
dS , (17)

We then multiply the modal equations M (54) by −h σ̆n and add it to −(17) to obtain

dEφσ
dt

=

N∑
n=0

N∑
m=0

N∑
s=0

Ξmns

∫
σ̆nJ

(
φ̆n,4sφ̆s

)
dS −

∫ [
p+n φ̆nJ

(
σ+, ϑ+

)
− p−n φ̆nJ

(
σ−, ϑ−

) ]
dS

+

N∑
n=0

N∑
s=0

∫
pnpsσ̆nJ

(
σ,4sφ̆s

)
dV + β

N∑
n=0

∫
σ̆n∂xφ̆ndS . (18)

Adding (11), (12), and (18) we finally obtain the energy equation in approximation B

dEBN
dt

=
N∑
n=0

N∑
s=0

∫
pnpsφ̆nJ(σ,4sφ̆s)dV +

N∑
m=0

N∑
n=0

N∑
s=0

Ξmns

∫
σ̆nJ(φ̆m,4sφ̆s)hdS

+

N∑
n=0

N∑
s=0

∫
pnpsσ̆nJ(σ,4sφ̆s)dV . (19)

2.0.1 The simplest model

The crudest approximation with non-zero surface buoyancy considers a barotropic interior dy-
namics (N = 0): qGN = q̆0 and φBN = φ0. Notice that∫ z+

z−
σ dz = h σ̆0 . (20)

Hence, the last term on the right-hand-side of (19) vanishes identically. Moreover, the first and
second terms on the right-hand-side of (19) cancel out because Ξ000 = 1. Thus, this simplest
model conserves energy. The interior equation is

∂tq̆0 + J (φ0 + σ̆0 , q̆0) + β ∂x (φ0 + σ̆0) = 0 , (21)

where

4φ̆0 = q̆0 and 4σ̆0 = − 1
h

(
ϑ+ − ϑ−

)
. (22)

The boundary conditions are

∂tϑ
± + J

(
φ0 + σ± , ϑ±

)
= 0 . (23)

2.0.2 An example of energy non-conservation

As described in appendix A of Rocha et al., with richer interior dynamics, approximation B
does not conserve energy. The simplest example with sheared interior dynamics is N = 1 with
constant stratification: qGN = 40φ̆0 +

√
241φ̆1 cos(πz) and φBN = φ0 +

√
2φ1 cos(πz). This is

the “two surfaces and two modes” model of Tulloch & Smith (2009). The only non-zero entries
of the interaction tensor are Ξ000 = Ξ011 = Ξ101 = Ξ110 = 1. Using this, and noticing that

p0 p1 = p1 and p1 p1 = p0 +
p2√

2
, (24)

the energy equation (19) becomes, after many cancellations,
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dEB1
dt

=

∫ [
φ1 J (σ̆1 , q̆1)− 1√

2
q̆1 J (σ̆1 , σ̆2)

]
dS , (25)

where we considered = h = 1 for simplicity. The choice made in appendix A of Rocha et al.
is 41φ̆1 = λφ1, where λ is a constant, so that the first term on the right-hand-side of (25) is
identically zero. As for the surface streamfunction, we choose

σ =
cosh (z + 1)

sinh 1
cosx+

cosh z

sinh 1
sinx . (26)

Some useful intermediate results are

σ̆1 =

∫ 0

−1
p1σ dz =

√
2

1 + π2
(cosx− sin y) , (27)

and

σ̆2 =

∫ 0

−1
p2σ dz =

√
2

1 + 4π2
(cosx+ sin y) . (28)

Thus,

J (σ̆1 , σ̆2) =
−4

1 + 5π2 + 4π4
sinx cos y . (29)

Using these results leads to the energy non-conservation results M (A10).

Enstrophy

To obtain an enstrophy equation for approximation B, we multiply the interior equations M (54)
by 4nφ̆n and integrate over the surface to obtain

d

dt

N∑
n=0

∫
(4nφ̆n)2

2
dS − β

N∑
n=0

∫
4nσ̆n∂xφ̆ndS = 0 . (30)

The enstrophy

N∑
n=0

∫
(4nφ̆n)2

2
dS , (31)

is conserved with β = 0. For non-zero β, we attempt to obtain a conservation law by eliminating
the β−term. First we form an equation for 4nσ̆n by combining the boundary conditions

∂t4nσ̆n −
1

h

N∑
m=0

q̆n

[
(p+n J

(
σ+ + p+mφ̆m , ϑ

+
)
− p−n J

(
σ− + p−mφ̆m , ϑ

−
) ]

= 0 . (32)

We then cross-multiply (32) with the modal equations M (54), integrate over the surface S, and
sum on n, the resulting equation with (30) to eliminate β. The final result is

d

dt

N∑
n=0

(4nφ̆n)2

2
+ (4nσ̆n)q̆ndS =

−
N∑

m=0

N∑
n=0

N∑
s=0

Ξmns

∫
4nσ̆nJ

(
φ̆m ,4sφ̆s

)
dS −

N∑
n=0

1
h

∫
4nσ̆npnpnJ

(
σ ,4sφ̆s

)
dV

+ 1
h

N∑
n=0

N∑
m=0

q̆n

[
p+n J

(
σ+ + p+mφ̆m , ϑ

+
)
− p−n J

(
σ− + p−mφ̆m , ϑ

−
) ]

. (33)
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2.0.3 The simplest model

For the most crude truncation (33) becomes

d

dt

(40φ̆0)
2

2
− 1

h

(
ϑ+ − ϑ−

)
40φ̆0dS =

−
∫
q̆0J
(
σ̆0 , ϑ

+ − ϑ−
)

dS +

∫
40φ̆0

[
J
(
σ+ , ϑ+

)
− J

(
σ− , ϑ−

) ]
dS . (34)

The right-hand-side of (34) is generally non-zero. We can always choose an initial condition for
which enstrophy is guaranteed to grow or decay. Choosing

σ =
cosh [z + 1]

sinh 1
cosx+

cosh [2(z + 1)]

sinh 2
cos 2y , (35)

where obtain

ϑ+ = cosx+ 2 cos 2y and ϑ− = 0 , (36)

and

σ0 = cosx+
1

2
cos 2y . (37)

If we choose

q̆0 = sinx sin 2y , (38)

we obtain

d

dt

q̆20
2
− 1

hϑ
+q̆0dS = coth 1− 1

2
coth 2− 3

4
, (39)

after integrating over one period in both directions. Hence enstrophy in the form of M (15) is
not conserved in this simplest model, and we conclude that, with non-zero β, enstrophy is not
conserved in approximation B.

3 Approximation C: enstrophy nonconservation

Enstrophy

To obtain an enstrophy conservation for approximation C, we multiply the modal equations M
(57) by q̆n, integrate over the surface, and sum on n, to obtain

d

dt

N∑
n=0

∫
q̆2n
2

dS − β
N∑
n=0

∫
4nσ̆n∂xψ̆ndS = 0 . (40)

With β = 0 the enstrophy
N∑
n=0

∫
q̆2n
2
, (41)

is conserved. For non-zero β we form an equation for 4nσ̆n by combining the boundary condi-
tions

∂t4nσ̆n − 1
h

N∑
m=0

p+n p
+
mJ
(
ψ̆m, ϑ

+
)
− p−n p

−
mJ
(
ψ̆m, ϑ

−
)

= 0 . (42)
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We then cross-multiply (42) with the modal equations, integrate over the surface, sum on n,
and combine with (40) to eliminate β

d

dt

N∑
n=0

∫
q̆2n
2

+ q̆n4nσ̆n dS = −
N∑

m=0

N∑
n=0

N∑
s=0

∫
Ξmns4nσ̆nJ

(
ψ̆m , q̆s

)
+

N∑
m=0

N∑
n=0

1
h

∫
q̆np

+
n p

+
mJ
(
ψ̆m, ϑ

+
)
− q̆np−n p−mJ

(
ψ̆m, ϑ

−
)
. (43)

The right-hand-side of (43) is only zero in very special cases.

3.0.4 The simplest model

Consider the most crude truncation (N = 0). Because Ξ000 = 1 and p0 = 1, the terms on
the second and third lines of (43) cancel each other, ensuring conservation of enstrophy with
non-zero β

d

dt

N∑
n=0

∫
q̆20
2
− 1

h q̆0
(
ϑ+ − ϑ−

)
dS = 0 . (44)

This simplest model is a very special case in which the following buoyancy variance

d

dt

N∑
n=0

∫
(ϑ+ − ϑ−)2

2
= 0 , (45)

and the enstrophy

d

dt

N∑
n=0

∫
(4ψ̆0)

2

2
= 0 , (46)

are conserved. The enstrophy conservation (44) follows directly from (45) and (46) and the
inversion relationship

q̆0 = 4ψ̆0 + 1
h(ϑ+ − ϑ−) . (47)

In general, however, one cannot construct invariants analogous to (45) and (46), and the system
does not conserves enstrophy with non-zero β.

3.0.5 An example of enstrophy nonconservation

Consider the simplest model with interior shear (N = 1). With constant buoyancy frequency we
obtain, after many cancellations,

d

dt

1∑
n=0

∫
q̆2n
2

+ q̆n4nσ̆n dS = −1

h

∫
q̆1J
(
ψ̆1 , ϑ

+ − ϑ−
)

dS =∫ (
ϑ+ − ϑ−

)
J
(
ψ̆1 , (4− π2)ψ̆1

)
dS + 2

√
2

∫
ϑ+J

(
ψ̆1, ϑ

−
)

dS , (48)

where the last equality follows from using the inversion relationship.
We construct an example in which enstrophy is not conserved with non-zero β. For simplicity

we choose ψ̆1 = sinx so that the first integral on the second row of (48) vanishes identically. As
for the surface fields, we choose

ϑ+ = cosx cos y and ϑ− = sin y . (49)
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All fields are periodic with same period. Integrating (48) over one period we obtain∫
ϑ+J

(
ψ̆1, ϑ

−
)

dS =
1

4
6= 0 . (50)

Thus enstrophy, in a form analogous to M (15), is not conserved in this simple example. We
therefore conclude that enstrophy is not generally conserved in approximation C.
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