Axis grids对象
使用FacetGrid对数据选择子集
将自编绘图函数映射至grid
使用PairGrid对象和pairplot()函数绘制成对关系图
import numpy as np
import pandas as pd
import seaborn as sns
from scipy import stats
import matplotlib as mpl
import matplotlib.pyplot as plt
sns.set(style="ticks")
np.random.seed(sum(map(ord, "axis_grids")))
%matplotlib inline
tips = sns.load_dataset("tips")
titanic = sns.load_dataset("titanic")
iris = sns.load_dataset("iris")
Subplot grid for plotting conditional relationships.
Subplot grid for plotting pairwise relationships in a dataset.
Grid for drawing a bivariate plot with marginal univariate plots.
第5章“绘制分面类别图”部分
第4章“多个变量相对于一个变量的回归线”部分
第3章“JointGrid对象”部分
绘制分面图,数据必须以Pandas DataFrame的"tidy data"形式存储,即每一列代表一个变量,每一行代表一个观测
lmplot()、factorplot()生成FacetGrid对象,pairplot()生成PairGrid对象,jointplot()生成JointGrid对象
row、col、hue参数
g = sns.FacetGrid(tips, col="time") # 生成FacetGrid对象,需要传入data、row、col、hue参数,等同于生成matplotlib的figure和axes,不会绘制任何图表
g = sns.FacetGrid(tips, col="time")
g.map(plt.hist, "tip") # 传入plotting function以及需要绘制的变量名(字符串形式)
<seaborn.axisgrid.FacetGrid at 0x9bdffd0>
g = sns.FacetGrid(tips, col="sex", hue="smoker")
g.map(plt.scatter, "total_bill", "tip", alpha=.7) # map中也可以传入其他plotting function的参数,如alpha
g.add_legend() # 添加图例
<seaborn.axisgrid.FacetGrid at 0x9fe2438>
g = sns.FacetGrid(tips, row="smoker", col="time", margin_titles=True) # FacetGrid中还有很多参数可选,如margin_titles参数
g.map(sns.regplot, "size", "total_bill", color=".3", fit_reg=False, x_jitter=.1)
<seaborn.axisgrid.FacetGrid at 0xafa5898>
g = sns.FacetGrid(tips, col="day", size=4, aspect=.5) # size、aspect参数控制每个分面的大小
g.map(sns.barplot, "sex", "total_bill")
<seaborn.axisgrid.FacetGrid at 0xb34d9b0>
titanic = titanic.assign(deck=titanic.deck.astype(object)).sort_values("deck")
# gridspec_kws参数,Dictionary of keyword arguments passed to matplotlib’s gridspec module (via plt.subplots)
g = sns.FacetGrid(titanic, col="class", sharex=False,
gridspec_kws={"width_ratios": [5, 3, 3]}) # 当每个分面中图表的内容多少有区别时,最好把每个分面设置不同的大小
g.map(sns.boxplot, "deck", "age")
<seaborn.axisgrid.FacetGrid at 0xb93c550>
ordered_days = tips.day.value_counts().index
g = sns.FacetGrid(tips, row="day", row_order=ordered_days,
size=1.7, aspect=4,) # *_order设置分面的顺序,如没有设置该参数,则按照Categorical datatype的order,或者变量在DataFrame中出现的顺序
g.map(sns.distplot, "total_bill", hist=False, rug=True)
<seaborn.axisgrid.FacetGrid at 0xbfcefd0>
palette参数
pal = dict(Lunch="seagreen", Dinner="gray") # 通过字典来设置颜色
g = sns.FacetGrid(tips, hue="time", palette=pal, size=5) # palette可以接受任何能够被color_palette()接受的值,也可以接受一个hue:"col"的字典
g.map(plt.scatter, "total_bill", "tip", s=50, alpha=.7, linewidth=.5, edgecolor="white")
g.add_legend()
<seaborn.axisgrid.FacetGrid at 0xd217d30>
hue_kws参数
# hue_kws参数,接受"the names of plotting function keyword arguments": [lists of keyword values]形式的字典,如本例中的marker设置散点的形状
g = sns.FacetGrid(tips, hue="sex", palette="Set1", size=5, hue_kws={"marker": ["^", "v"]})
g.map(plt.scatter, "total_bill", "tip", s=100, linewidth=.5, edgecolor="white")
g.add_legend()
<seaborn.axisgrid.FacetGrid at 0xd4af978>
col_wrap参数,此时row参数被禁用
attend = sns.load_dataset("attention").query("subject <= 12")
g = sns.FacetGrid(attend, col="subject", col_wrap=4, size=2, ylim=(0, 10))
g.map(sns.pointplot, "solutions", "score", color=".3", ci=None)
<seaborn.axisgrid.FacetGrid at 0xd6c04e0>
还包含了FacetGrid.set_axis_labels()等一系列更为特定的方法
with sns.axes_style("white"):
g = sns.FacetGrid(tips, row="sex", col="smoker", margin_titles=True, size=2.5)
g.map(plt.scatter, "total_bill", "tip", color="#334488", edgecolor="white", lw=.5)
g.set_axis_labels("Total bill (US Dollars)", "Tip") # 设置坐标轴标签
g.set(xticks=[10, 30, 50], yticks=[2, 6, 10]) # 设置坐标轴刻度
g.fig.subplots_adjust(wspace=.02, hspace=.02) # matplotlib中的方法
For even more customization, you can work directly with the underling matplotlib Figure
and Axes
objects, which are stored as member attributes at fig
and axes
(a two-dimensional array), respectively. When making a figure without row or column faceting, you can also use the ax
attribute to directly access the single axes.
g = sns.FacetGrid(tips, col="smoker", margin_titles=True, size=4)
g.map(plt.scatter, "total_bill", "tip", color="#338844", edgecolor="white", s=50, lw=1)
for ax in g.axes.flat: # 获取ax对象
ax.plot((0, 50), (0, .2 * 50), c=".2", ls="--") # 绘制45度线
g.set(xlim=(0, 60), ylim=(0, 14))
<seaborn.axisgrid.FacetGrid at 0xac08ba8>
自编函数的要求
It must plot onto the "currently active" matplotlib Axes. This will be true of functions in the matplotlib.pyplot namespace, and you can call plt.gca to get a reference to the current Axes if you want to work directly with its methods.
It must accept the data that it plots in positional arguments. Internally, FacetGrid will pass a Series of data for each of the named positional arguments passed to FacetGrid.map.
It must be able to accept color and label keyword arguments, and, ideally, it will do something useful with them. In most cases, it's easiest to catch a generic dictionary of ****kwargs** and pass it along to the underlying plotting function.
def quantile_plot(x, **kwargs):
qntls, xr = stats.probplot(x, fit=False)
plt.scatter(xr, qntls, **kwargs)
g = sns.FacetGrid(tips, col="sex", size=4)
g.map(quantile_plot, "total_bill")
<seaborn.axisgrid.FacetGrid at 0xe543860>
def qqplot(x, y, **kwargs):
_, xr = stats.probplot(x, fit=False)
_, yr = stats.probplot(y, fit=False)
plt.scatter(xr, yr, **kwargs)
g = sns.FacetGrid(tips, col="smoker", size=4)
g.map(qqplot, "total_bill", "tip")
<seaborn.axisgrid.FacetGrid at 0xf51a390>
g = sns.FacetGrid(tips, hue="time", col="sex", size=4)
g.map(qqplot, "total_bill", "tip")
g.add_legend()
<seaborn.axisgrid.FacetGrid at 0xf184d30>
g = sns.FacetGrid(tips, hue="time", col="sex", size=4,
hue_kws={"marker": ["s", "D"]})
g.map(qqplot, "total_bill", "tip", s=40, edgecolor="w")
g.add_legend()
<seaborn.axisgrid.FacetGrid at 0xf5c9160>
Sometimes, though, you'll want to map a function that doesn't work the way you expect with the color and label keyword arguments. In this case, you'll want to explictly catch them and handle them in the logic of your custom function. For example, this approach will allow use to map plt.hexbin, which otherwise does not play well with the FacetGrid API
def hexbin(x, y, color, **kwargs):
cmap = sns.light_palette(color, as_cmap=True)
plt.hexbin(x, y, gridsize=15, cmap=cmap, **kwargs)
with sns.axes_style("dark"):
g = sns.FacetGrid(tips, hue="time", col="time", size=4)
g.map(hexbin, "total_bill", "tip", extent=[0, 50, 0, 10])
<seaborn.axisgrid.FacetGrid at 0xd3c5860>
在PairGrid中,每一行、列都赋予不同的变量,因而可以展示变量之间的两两关系
g = sns.PairGrid(iris)
g.map(plt.scatter) # 绘制成对散点图,对角线上默认绘制散点图
<seaborn.axisgrid.PairGrid at 0xf51aa58>
map_diag()、map_offdiag()方法
g = sns.PairGrid(iris)
g.map_diag(plt.hist) # 可以在对角线上绘制直方图或核密度图,但是坐标轴与直方图的count、核密度图的density不对应
g.map_offdiag(plt.scatter) # 在非对角线上绘制成对散点图
<seaborn.axisgrid.PairGrid at 0x11c22860>
g = sns.PairGrid(iris, hue="species") # 设置hue参数,对不同类别的观测点绘制不同颜色
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
<seaborn.axisgrid.PairGrid at 0x144af780>
vars参数
g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"], hue="species") # 默认绘制data数据集中的所有变量,设置vars参数,绘制部分变量
g.map(plt.scatter)
<seaborn.axisgrid.PairGrid at 0x16baad68>
map_upper()、map_lower()方法
g = sns.PairGrid(iris)
g.map_upper(plt.scatter)
g.map_lower(sns.kdeplot, cmap="Blues_d")
g.map_diag(sns.kdeplot, lw=3, legend=False)
<seaborn.axisgrid.PairGrid at 0x173d71d0>
g = sns.PairGrid(tips, y_vars=["tip"], x_vars=["total_bill", "size"], size=4)
g.map(sns.regplot, color=".3")
g.set(ylim=(-1, 11), yticks=[0, 5, 10])
<seaborn.axisgrid.PairGrid at 0x16a45438>
PairGrid方法和map方法中有一系列参数可供设置
g = sns.PairGrid(tips, hue="size", palette="GnBu_d")
g.map(plt.scatter, s=50, edgecolor="white")
g.add_legend()
<seaborn.axisgrid.PairGrid at 0x15eefc88>
默认绘制散点图和直方图,非对角线可绘制回归线,对角线可绘制核密度图
sns.pairplot(iris, hue="species", size=2.5)
<seaborn.axisgrid.PairGrid at 0x15e8b358>
g = sns.pairplot(iris, hue="species", palette="Set2", diag_kind="kde", size=2.5)