nlp4kor

https://github.com/bage79/nlp4kor https://facebook.com/nlp4kor

왕초보를 위한 NN

Luis Serrano
https://youtu.be/BR9h47Jtqyw

Neural Networks

hidden layer 1 hidden layer 2 hidden layer 3
input layer

Goal: Split Data

Gradient descent

Gradient descent

Logistic Regression

Error $=\bullet+\cdots+\bigcirc+\bigcirc+\bullet+\bullet$

Logistic Regression

Error $=\bullet+\bullet+\bullet+\bullet+\bullet+\bullet$

Minimize error

Probability

Very likely
blue

[^0]
Error function

$0.6^{*} 0.2^{*} 0.1^{*} 0.7=0.0084$

$0.7^{*} 0.9^{*} 0.8^{*} 0.6=0.3024$

Error function

$0.6^{*} 0.2^{*} 0.1^{*} 0.7=0.0084$
$-\log (0.6)-\log (0.2)-\log (0.1)-\log (0.7)=4.8$

$0.7 * 0.9^{*} 0.8^{\star} 0.6=0.3024$
$-\log (0.7)-\log (0.9)-\log (0.8)-\log (0.6)=1.2$

Neuron

Neuron

Non-linear regions

Combining Regions

Combining Regions

Activation function

$$
S(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}
$$

https://en.wikipedia.org/wiki/Sigmoid_function

Activation function

Logistic Regression 2

Multi-layer Perceptron w. 1 hidden layer (logistic sigmoid)

Neural Network

$0.7+0.8=1.5$
|

($\quad-1$) 26:43/33:19

Neural Network

Neural Network

Neural Network

y) $7 x+-3 y-(1)=0$

Neural Network

Neural Network

Neural Network

Hidden layer

Deep Neural Network

Dropout

Regularization

Activation Functions

Learning Rate Decay

Batch Normalization

[^0]:

