## Mathematics in MarkDown¶

#### Inline Equation :¶

Pythogorous Theorem : \$x^2 + y^2 = 1 \$

Pythogorous Theorem : $x^2 + y^2 = 1$

#### Simple display of Equation :¶

Pythogorous Theorem : \$\$ x^2 + y^2 = 1 \$\$

Pythogorous Theorem : $$x^2 + y^2 = 1$$

## Breckets¶

Markdown Letter
( \big( $( \big($
\Big( \bigg( \Bigg( $\Big( \bigg( \Bigg($
\big] \Big] \bigg] \Bigg] $\big] \Big] \bigg] \Bigg]$
\big{ \Big{ \bigg{ \Bigg{ $\big\{ \Big\{ \bigg\{ \Bigg\{$
\big \langle \Big \langle \bigg \langle \Bigg \langle $\big \langle \Big \langle \bigg \langle \Bigg \langle$
\big \rangle \Big \rangle \bigg \rangle \Bigg \rangle $\big \rangle \Big \rangle \bigg \rangle \Bigg \rangle$

## Integrals¶

MarkDown       Symbol
\int_{lower}^{upper} $\int_{lower}^{upper}$
\iint_{lower}^{upper} $\iint_{lower}^{upper}$
\iiint_{lower}^{upper} $\iiint_{lower}^{upper}$

\int_{a}^{x} x^2 dx $$\int_{a}^{x} x^2 dx$$
\iint_V \mu(u,v) \,du\,dv $$\iint_V \mu(u,v) \,du\,dv$$
\iiint_V \mu(u,v,w) \,du\,dv\,dw $$\iiint_V \mu(u,v,w) \,du\,dv\,dw$$

## Sums and products¶

Inline \sum_{n=1}^{\infty} 2^{-n} = 1 $\quad\quad\sum_{n=1}^{\infty} 2^{-n} = 1$

\sum_{n=1}^{\infty} 2^{-n} = 1 $$\sum_{n=1}^{\infty} 2^{-n} = 1$$
\prod_{i=a}^{b} f(i) $$\prod_{i=a}^{b} f(i)$$

Assume we have the next sets

$$` S = \{ z \in \mathbb{C}\, |\, |z| < 1 \} \quad \textrm{and} \quad S_2=\partial{S}$$