Mathematics in MarkDown

Inline Equation :

Pythogorous Theorem : \$ x^2 + y^2 = 1 \$

Pythogorous Theorem : $ x^2 + y^2 = 1 $

Simple display of Equation :

Pythogorous Theorem : \$\$ x^2 + y^2 = 1 \$\$

Pythogorous Theorem : $$ x^2 + y^2 = 1 $$

Breckets

Markdown Letter
( \big( $ ( \big( $
\Big( \bigg( \Bigg( $ \Big( \bigg( \Bigg( $
\big] \Big] \bigg] \Bigg] $ \big] \Big] \bigg] \Bigg] $
\big{ \Big{ \bigg{ \Bigg{ $ \big\{ \Big\{ \bigg\{ \Bigg\{ $
\big \langle \Big \langle \bigg \langle \Bigg \langle $ \big \langle \Big \langle \bigg \langle \Bigg \langle $
\big \rangle \Big \rangle \bigg \rangle \Bigg \rangle $ \big \rangle \Big \rangle \bigg \rangle \Bigg \rangle $

Integrals

MarkDown       Symbol                 
\int_{lower}^{upper} $ \int_{lower}^{upper} $
\iint_{lower}^{upper} $ \iint_{lower}^{upper} $
\iiint_{lower}^{upper} $ \iiint_{lower}^{upper} $

\int_{a}^{x} x^2 dx $$ \int_{a}^{x} x^2 dx $$
\iint_V \mu(u,v) \,du\,dv $$ \iint_V \mu(u,v) \,du\,dv $$
\iiint_V \mu(u,v,w) \,du\,dv\,dw $$ \iiint_V \mu(u,v,w) \,du\,dv\,dw $$

Sums and products

Inline \sum_{n=1}^{\infty} 2^{-n} = 1 $ \quad\quad\sum_{n=1}^{\infty} 2^{-n} = 1 $

\sum_{n=1}^{\infty} 2^{-n} = 1 $$ \sum_{n=1}^{\infty} 2^{-n} = 1 $$
\prod_{i=a}^{b} f(i) $$ \prod_{i=a}^{b} f(i) $$

Assume we have the next sets

$$` S = \{ z \in \mathbb{C}\, |\, |z| < 1 \} \quad \textrm{and} \quad S_2=\partial{S} $$