To study to what extend the phase diagram depends on the cost of infection cinf, and on the trade-off shapes cdef(ccon),cuptake(puptake) we plot the phase diagram for a number of different choices in the following.
Import packages.
from cycler import cycler
import sys
sys.path.append('../lib')
import numpy as np
import matplotlib.colors
import matplotlib.pyplot as plt
from matplotlib import transforms, gridspec, ticker
import palettable
import shapely.ops
%matplotlib inline
import plotting
import evolimmune
import misc
import analysis
%load_ext autoreload
%autoreload 2
plt.style.use(['paper'])
plt.rc('lines', linewidth=1.0)
plt.rc('axes', labelpad=1.0)
eps = 1e-8
use czrecursion, cztogrowthrate use cstepmarkov
Read in and summarize data
df = analysis.loadnpz('data/phases.npz')
analysis.intelligent_describe(df, nunique=10)
dfg = df.groupby(['lambda_', 'mus', 'cup'])
nparams = len(dfg)
----------------------------------------------------- values of columns with no more than 10 unique entries boundary: ac; ap; cm; io; mi; pc; pi; pm; po boundtol: 0.005 cup: 0.1*pup+pup**2; 0.05*pup+2*pup**2; 0.2*pup+2*pup**2 deltainit: 0.02 deltatol: 0.0005 lambda_: 1.5; 3.0; 4.5 logfeps: -9.0 mus: 0.5*(1.0-2.0*epsilon/(1.0+epsilon)), 0.5*(1.0+0.8*epsilon); 1.0-2.0*epsilon/(1.0+epsilon), 1.0+0.8*epsilon; 1.0-epsilon, 1.4-0.6*(1.0-epsilon)+0.2*(1.0-epsilon)**2; 1.5*(1.0-2.0*epsilon/(1.0+epsilon)), 1.5*(1.0+0.8*epsilon) nburnin: 10000.0 niter: 1000000.0 qboundtol: 0.0005 xtol: 0.025 xtolbound: 0.01 ----------------------------------------------------- summary statistics of other columns aenv pienvbnd count 1005.000000 1005.000000 mean 0.500825 0.555374 std 0.353774 0.289091 min 0.000015 -0.408107 25% 0.133078 0.373598 50% 0.523847 0.575282 75% 0.855588 0.769385 max 0.951229 1.003422 -----------------------------------------------------
define colors used in plot and phasenames
black = matplotlib.rcParams['text.color']
colors = np.asarray(palettable.colorbrewer.qualitative.Set3_6.mpl_colors)[[4, 0, 2, 3, 5, 1]]
strategies_s = ['a', 'p', 'o', 'i', 'm', 'c']
color_dict = dict(zip(strategies_s, colors))
linecolors = palettable.colorbrewer.qualitative.Dark2_6.mpl_colors
plt.rc('axes', prop_cycle=cycler('color', linecolors))
phasenames = misc.DefaultIdentityDict(o='$i$', i='$ib$')
Define plotting functions
def plotmus(ax, musstr, alpha=1.0, label=True):
epsilon = np.linspace(0.0, 1.0, 100)
mus = evolimmune.mus_from_str(musstr)
mu1, mu2 = mus(epsilon)
if label:
ax.plot(mu1, mu2, c=linecolors[1], alpha=alpha, label='defense')
else:
ax.plot(mu1, mu2, c=linecolors[1], alpha=alpha)
ax.plot(mu1[0], mu2[0], 'o', markeredgecolor='none', markersize=3, c=linecolors[1], alpha=alpha)
def plotstatecosts(ax, musstr, musstrref=None, lambda_=None):
if lambda_:
ax.text(1, 1, '${0}={1}$'.format(r'c_{\rm inf}', lambda_),
transform=ax.transAxes, ha='right', va='top')
if musstrref is not None:
plotmus(ax, musstrref, alpha=0.25, label=False)
plotmus(ax, musstr)
ax.set_xlabel(evolimmune.varname_to_tex['cconstitutive'])
ax.set_ylabel(evolimmune.varname_to_tex['cdefense'])
ax.set_xlim(0, 1.5)
ax.set_ylim(0, 2.7)
ax.locator_params(nbins=3)
def plotcup(ax, cupstr, cupstrref=None):
pup = np.linspace(0.0, 0.2, 100)
if cupstrref is not None:
cup = evolimmune.cup_from_str(cupstrref)
ax.plot(pup, cup(pup), c=linecolors[2], alpha=.25)
cup = evolimmune.cup_from_str(cupstr)
ax.plot(pup, cup(pup), c=linecolors[2])
ax.set_xlabel(evolimmune.varname_to_tex['pup'])
ax.set_ylabel(evolimmune.varname_to_tex['cup'])
ax.set_ylim(0, 0.1)
ax.locator_params(nbins=1)
Putting it all together into one figure
fig = plt.figure(figsize=(6, 7))
nrow = 4
nsubrow = 3
height_ratios = [1, 10, 10]
gsglobal = gridspec.GridSpec(4, 2)
import param1
lambdaref, musref, cupref = param1.lambda_, param1.mus, param1.cup
label_axes = []
for i in range(1, 9):
p = __import__('param{}'.format(i))
lambda_ = p.lambda_
mus = p.mus
cup = p.cup
dfg = df[(df.mus==mus)&(df.cup==cup)&(df.lambda_==lambda_)]
print lambda_, mus, cup
gs = gridspec.GridSpecFromSubplotSpec(3, 2, subplot_spec=gsglobal[(i-1)%nrow, (i-1)//nrow],
width_ratios=[1, 2], height_ratios=[1, 30, 20],
hspace=1.5, wspace=0.6)
axlambda = fig.add_subplot(gs[0, 0])
axlambda.text(0.5, -3.0, '${0}={1}$'.format(r'c_{\rm inf}', lambda_),
transform=axlambda.transAxes, ha='center', va='top')
axlambda.axis('off')
axmu = fig.add_subplot(gs[1, 0])
plotstatecosts(axmu, mus, musref)
axcup = fig.add_subplot(gs[2, 0])
plotcup(axcup, cup, cupref)
for ax in [axmu, axcup]:
plotting.despine(ax)
axm = fig.add_subplot(gs[:, 1])
try:
polygons = evolimmune.polygons_from_boundaries(dfg, yconv=evolimmune.to_tau)
phases = evolimmune.phases_from_polygons(polygons)
except:
pass
else:
for phasename, phase in phases.iteritems():
try:
axm.add_patch(analysis.shapely_to_mpl(phase, ec='None',
fc=color_dict[phasename],
lw=1.0))
phaset = shapely.ops.transform(lambda x, y, z=None: (x, np.log(y+eps)), phase)
axm.text(phaset.centroid.x, np.exp(phaset.centroid.y),
r'$\mathbf{%s}$'%phasenames[phasename][1:-1],
ha='center', va='center')
except:
pass
axm.set_ylim(evolimmune.to_tau(df.aenv.min()), evolimmune.to_tau(df.aenv.max()))
axm.set_yscale('log')
axm.yaxis.set_major_formatter(ticker.ScalarFormatter())
axm.set_xlabel('$\pi_{env}$')
axm.set_ylabel(r'$\tau_{env}$')
axm.grid(which='major', alpha=0.75)
axm.grid(which='minor', lw=0.4, alpha=0.5)
axm.set_axisbelow(False)
plotting.despine(axm, spines='all')
label_axes.append((i, axlambda))
label_axes = [ax for i, ax in sorted(label_axes)]
plotting.label_axes(label_axes, xy=(-0.6, 1.0), fontsize='large', va='top')
gsglobal.tight_layout(fig, h_pad=1.0, w_pad=2.0)
fig.savefig('SIaltphases.pdf')
fig.savefig('SIaltphases.svg')
3.0 1.0-2.0*epsilon/(1.0+epsilon), 1.0+0.8*epsilon 0.1*pup+pup**2 3.0 1.0-2.0*epsilon/(1.0+epsilon), 1.0+0.8*epsilon 0.2*pup+2*pup**2 3.0 1.0-2.0*epsilon/(1.0+epsilon), 1.0+0.8*epsilon 0.05*pup+2*pup**2 1.5 0.5*(1.0-2.0*epsilon/(1.0+epsilon)), 0.5*(1.0+0.8*epsilon) 0.1*pup+pup**2 4.5 1.5*(1.0-2.0*epsilon/(1.0+epsilon)), 1.5*(1.0+0.8*epsilon) 0.1*pup+pup**2 4.5 1.0-2.0*epsilon/(1.0+epsilon), 1.0+0.8*epsilon 0.1*pup+pup**2 3.0 0.5*(1.0-2.0*epsilon/(1.0+epsilon)), 0.5*(1.0+0.8*epsilon) 0.1*pup+pup**2 3.0 1.0-epsilon, 1.4-0.6*(1.0-epsilon)+0.2*(1.0-epsilon)**2 0.1*pup+pup**2
Influence of parameter choice on the phase diagram presented in Fig. 2. For every panel the parameter choices are shown on the left and the phase boundaries between proto-adaptive, innate, innate bet hedging, mixed and CRISPR-like strategies are shown on the right. As a reference, lines in lighter color show trade-off and uptake cost for parameter set used in Fig. 2. (A) Phase diagram for parameters used in Fig. 2. (B) More expensive active acquisition (cuptake multiplied by a factor of two). (C) Different functional form for cost of active acqusition: cuptake=0.05×puptake+2×p2uptake. (D) More permissive state-dependent costs (costs multiplied by a factor of 0.5). (E) Less permissive state-dependent costs (costs multiplied by a factor of 1.5). (F) Higher cost of infection. (G) Higher cost of immune protection. (H) Different functional form for cost trade-off, cdefense=1.4−0.6×cconstitutive+0.2×c2constitutive