In [23]:
using PyPlot
using PyCall

@pyimport numpy as np

xs = np.arange(-7.25, 7.25, 0.01)
ys = np.arange(-5, 5, 0.01)
x, y = np.meshgrid(xs, ys)

eq1 = ((x./7).^2 .* np.sqrt(abs.(abs.(x)-3)./(abs.(x)-3))+(y./3).^2 .*np.sqrt(abs.(y+3 ./7 .* np.sqrt(33))./(y+3 ./7 .* sqrt(33)))-1)
eq2 = (abs.(x/2)-((3*np.sqrt(33)-7)/112).*x.^2-3+np.sqrt(1-(abs.(abs.(x)-2)-1).^2)-y)
eq3 = (9 .*np.sqrt(abs.((abs.(x)-1).*(abs.(x)-.75))./((1-abs.(x)).*(abs.(x)-.75)))-8.*abs.(x)-y)
eq4 = (3 .*abs.(x)+.75 .*np.sqrt(abs.((abs.(x)-.75).*(abs.(x)-.5))./((.75-abs.(x)).*(abs.(x)-.5)))-y)
eq5 = (2.25.*np.sqrt(abs.((x-.5).*(x+.5))./((.5-x).*(.5+x)))-y)
eq6 = (6*np.sqrt(10)./7+(1.5-.5.*abs.(x)).*np.sqrt(abs.(abs.(x)-1)./(abs.(x)-1))-(6*np.sqrt(10)/14).*np.sqrt(4-(abs.(x)-1).^2)-y)

for f in [eq1,eq2,eq3,eq4,eq5,eq6]
contour(x, y, f, [0])
end

In [26]:
using PyPlot

t = collect(0:0.1:2π)
x = 16 .*sin.(t).^3
y = 13 .*cos.(t)-5.*cos.(2t)-2.*cos.(3t)-4.*cos.(4t)
plot(x,y,color="#ffc0cb")

Out[26]:
1-element Array{PyCall.PyObject,1}:
PyObject <matplotlib.lines.Line2D object at 0x1278ceb00>
In [34]:
import Plots

f(x) = abs(x) ≤ 1 ? x^4-x^2+6 : 12/(abs(x)+1)
g(x) = 1/2*cos(2π*x)+7/2

p1 = Plots.plot(size=(500, 250), legend=false, ylim=(0,7))
Plots.plot!(p1, f, -10, 10, lw=2.5)
Plots.plot!(p1, g, -2, 2, lw=2.5)

Plots.plot(p1, aspect_ratio=1.0)

Out[34]: