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Abstract

Cancer genomes are altered by various mutational processes and, like palimpsests, bear the
signatures of these successive processes. The Palimpsest R package provides a complete
workflow for the characterisation and visualisation of mutational signatures and their evolution
along tumour development. The package includes a wide range of functions for extracting
single base substitution (SBS), double base substitution (DBS) and indel mutational signatures
as well as structural variant (SV) signatures. Palimpsest estimates the probability of each
mutation being due to each signature, which allows the the analysis of the clonality of each
alteration, and the prediction of the mechanism at the origin of each driver event. In short,
Palimpsest is an easy-to-use toolset for the reconstruction of the natural history of a tumour
using whole exome or whole genome sequencing data. This document, paired with the
“Palimpsest_test_script.R” demo script, outlines the typical workflow for the analyis of the
genomic data from a series of tumours.

Package

Report issues at www.github.com/FunGeST/Palimpsest

https://en.wikipedia.org/wiki/Palimpsest
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1 Introduction
This document presents a typical mutational signature analysis of whole genome sequencing
data using Palimpsest. The corresponding script (“Palimpsest_test_script.R”) and genomic
data (LiC1162) are provided in the package GitHub repository. This script (1) extracts de
novo and known mutational signatures (the COSMIC reference signatures) from the example
dataset, (2) estimates the probability of each mutation being due to each process, (3) infers
the clonality of each mutation and thus compares early and late signatures, (4) estimates the
timing of chromosome duplications using somatic mutations, (5) analyses structural variant
signatures and (6) integrates all these results in a schematic tumour history plot.

Palimpsest 2.0, like the previous version, has single base substitution (SBS) and structural
variant (SV) signatures extraction capabilities. Since the initial release of the package, two
new types of mutation signatures, double base substition (DBS) and small insertion and
deletion (indel), have been defined (Alexandrov et al., 2018). Functions for the extraction of
these two mutation types are now included in Palimpsest, making it a comprehensive, but
simple tool for the analysis of all genomic alterations present in the tumours of a cancer series.
For more information on the latest definitions of mutational signatures please see the original
paper and the COSMIC website.

2 Installation Instructions
The latest version of the package can be installed from the FunGeST GitHub repository using
devtools:
------------------------------------------------------------------

> install.packages("devtools")

> library(devtools)

> devtools::install_github("FunGeST/Palimpsest")

------------------------------------------------------------------

3 Dependencies
To add indel mutation categories we use a python script provided by the Borad Institute from
the ICGC pan cancer genome analysis (Alexandrov et al., 2018), which is embedded in the R
function annotate_VCF(). For this to work the function must be run in a Unix environment
(i.e. Mac or Linux) with python 2.7 installed. The other aspects of the annotate_VCF()

function, and indeed all other functions, work on a Windows operating system. The indel
aspect of this function also requires you to have a FASTA file compatible with the input VCF
genome (including position and chromosome names) accessible in your local environment. If
you only wish to work on SBS/DBS/SV signatures you can skip this step.

The R package bedr is required to perform structural variant signature analysis. The bedr API
gives access to “BEDTools” and offers additional utilities for genomic region processing. To
gain the functionality of bedr package you will need to have the BEDTools program installed
and in your default PATH.
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4 Input Data
One input file is necessary to perform the core Palimpsest analyses:

1. vcf : Somatic mutation catalogue of a tumour series (can contain SNVs, indels or both).

The study of somatic mutations can be extended to include an analysis of clonality, and/or
structural variation signatures (both optional). Corresponding input files:

2. cna_data: Segmented copy-number data.
3. annot_data: Minimal sample annotation data (i.e. includes gender and tumour purity).
4. sv_data: File listing structural variants information

Please refer to the example files provided with the package for the correct format. You can
also check out the README file for further information about the formats of the input files.

4.1 Loading genomic data and reference genome
Once installed, load the package and the reference genome and you’re ready to go! Palimpsest
works with the choice of reference genomes available via BSgenome. Ensure that you have
the BSgenome library installed and then load the appropriate reference genome for your data.
------------------------------------------------------------------

> # Load Palimpsest package

> library(Palimpsest)

> library(BSgenome.Hsapiens.UCSC.hg19) # Reference genome of choice

------------------------------------------------------------------

Next we define the directory containing input data, and the desired output directory (resdir).
------------------------------------------------------------------

> # define input directory containing example dataset

> datadir <- "Palimpsest/RUNNING_PALIMPSEST_EXAMPLE/LiC1162/"

>

> # define parent output directory

> resdir_parent <- "~/Results/"

> if(!file.exists(resdir_parent)) dir.create(resdir_parent)

------------------------------------------------------------------

We provide example input datasets with this package in the datadir, from our paper Mutational
signatures reveal the dynamic interplay of risk factors and cellular processes during liver
tumorigenesis (Letouzé et al., 2017), which can be loaded as follows:
------------------------------------------------------------------

> # Loading the example data.

> load(file.path(datadir,"vcf.RData"))

> load(file.path(datadir,"cna_data.RData"))

> load(file.path(datadir,"annot_data.RData"))

> load(file.path(datadir,"sv_data.RData"))

------------------------------------------------------------------
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4.2 Preparing input data for mutational signature analysis
Annotating the VCF prepares it for analysis in Palimpsest. The following function annotates
each mutation with its corresponding COSMIC mutation category (be it SBS, DBS or indel),
the gene in which it occurs (if any) and whether or not it occurs on the transcribed strand.
The genes are added from a table of Ensembl genes (ensgene) that is provided with the
package in both hg19 and hg38 formats. You may choose which mutation type categories are
added (see the help documentation at ?annotate_VCF() for more information on this). If you
wish to add indel mutation categories, you must supply a filepath to a FASTA file compatible
with your input data and be working in a Unix environment (see Dependencies).
------------------------------------------------------------------

> # Annotate VCF with categories of all mutation types

> vcf <- annotate_VCF(vcf = vcf, ref_genome = BSgenome.Hsapiens.UCSC.hg19,

ref_fasta = "~/Homo_sapiens_assembly19.fasta")

>

> # Annotate VCF with SBS & DBS categories only

> # (Windows friendly & no FASTA dependency)

> vcf <- annotate_VCF(vcf = vcf, ref_genome = BSgenome.Hsapiens.UCSC.hg19,

add_ID_cats = FALSE)

------------------------------------------------------------------

The following function produces the input for NMF extraction, which consists of a list of two
matrices: mut_nums, the number mutations of each category in each sample, and mut_props,
the proportion of mutations of each category in each sample. The function calculates the
input for one mutation type at a time, i.e. while the Type argument is set to “SBS” it will
output the number and proportions of each SBS category in each sample in the VCF.
------------------------------------------------------------------

> SBS_input <- palimpsest_input(vcf = vcf, Type = "SBS")

> DBS_input <- palimpsest_input(vcf = vcf, Type = "DBS")

> ID_input <- palimpsest_input(vcf = vcf, Type = "ID")

------------------------------------------------------------------

5 Mutational Signatures
Palimpsest offers two approaches to mutational signature analysis. The first option is to
perform a de novo extraction. In this case, non-negative matrix factorization (NMF) is used to
estimate the number of different processes operative in the data, the signature of each process
and its activity in each tumour. This approach can identify new mutational signatures not
present in the COSMIC reference signatures. The other option is to extract known signatures
(e.g. the reference signatures from COSMIC database provided with the package) from the
input data. In this case NMF is only used to estimate the activity of each signature in each
tumour.

For simplicity the following examples describe the extraction of SBS mutational signatures,
but all of the functions work in the same way for DBS and indel signature analysis. For more
information on their use with of DBS and indel signatures please see the relevant section.
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5.1 De Novo mutational signature analysis using NMF
The de novo mutational signature extraction is based on the use of non-negative matrix
factorisation using the NMF package (Gaujoux & Seoighe, 2010), which defaults to the
use of the standard algorithm from Brunet et al. (2004). The factorisation rank (i.e. the
optimal number of signatures) can be manually defined uisng the num_of_sigs parameter,
or estimated automatically using the cophenetic correlation coefficients and residual sum of
squares (RSS) as described in the original article (Gaujoux & Seoighe, 2010). For larger
datasets, it is advisable to increase the number of iterations (nrun) parameter to avoid local
minima and obtain a stable number of mutational signatures (We recommend 10 iterations
for the 44WGS input and 20 iterations for larger datasets). The resulting signatures (Fig. 2)
are plotted in the resdir.
------------------------------------------------------------------

> SBS_denovo_sigs <- NMF_Extraction(input_matrices = SBS_input,

range_of_sigs = 1:10, nrun = 10,

resdir = resdir)

------------------------------------------------------------------

Figure 1: NMF rank estimation (plotted in the resdir). These outputs from the NMF
package can be used to determine the optimal number of signatures. Alternatively, Palimpsest
can estimate this automatically by taking the last rank before the cophenetic distance starts
reducing dramatically (more than 0.02), which in the case of the example 44 samples is 7.
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Figure 2: The 7 single base substitution mutational signatures extracted de novo from the
44 samples in the example dataset. Each mutational signature is represented as a barplot
giving the frequency of mutations in each category, taking into account substitution types
(top) and trinucleotide contexts (bottom).
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5.2 Cosine similarity
Once de novo mutational signatures have been extracted, it is useful to determine whether they
represent new mutational processes or if they correspond to previously described signatures.
The deconvolution_compare() function estimates the cosine similarity score (0 = completely
different, 1 = identical) between two sets of signatures (e.g. de novo signatures and the
reference COSMIC signatures provided with the package) according to the method from
Alexandrov et al. (2013). The compare_results() function prints a user friendly table that
pairs each reference signature with its most similar de novo signature.
------------------------------------------------------------------

> # Compare the de novo signatures with published COSMIC signatures

> compare_results(reference_sigs = SBS_cosmic,extraction_1 = SBS_denovo_sigs)

> SBS_cosine_similarities <- deconvolution_compare(SBS_denovo_sigs,SBS_cosmic)

------------------------------------------------------------------

Figure 3: Cosine similarity heatmap comparing the 7 SBS de novo signatures to the reference
COSMIC signatures. The colour code represents the similarity (white to red/0 to 1) between
each pair of signatures. Signatures are grouped by their similarity using an unsupervised
hierarchical clustering of their cosine similarity scores, with the corresponding dendrogram
next to the plot.
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5.3 Extracting known mutational signatures
In addition to de novo extraction, Palimpsest can extract known mutational signatures from
the input tumours using NMF. You can skip the de novo extractions and start at this stage,
although we highly recommend a de novo analysis as the start-point for any signature analysis,
as this can identify completely new signatures/new variants of exisiting signatures in your
data that may not be present in the COSMIC database.

You could provide a set of signatures from a previous de novo extraction, or use the COSMIC
reference signatures from Alexandrov et al. (2018). In the following example we extract the
10 SBS signatures identified in liver tumours by Letouzé et al. (2018) from the example
dataset.
------------------------------------------------------------------

> # select desired COSMIC SBS reference signatures

> SBS_liver_names <- c("SBS1","SBS4","SBS5","SBS6","SBS12","SBS16",

"SBS17","SBS18","SBS22","SBS23", "SBS24")

> SBS_liver_sigs <- SBS_cosmic[rownames(SBS_cosmic) %in% SBS_liver_names,]

>

> # calculate and plot the exposure of the signatures across the series

> SBS_signatures_exp <- deconvolution_fit(input_matrices = SBS_input,

input_signatures = SBS_liver_sigs,

signature_colours = sig_cols,

resdir = resdir)

>

> deconvolution_exposure(signature_contribution = SBS_signatures_exp,

signature_colours = sig_cols)

------------------------------------------------------------------

5.4 DBS and Indel Signature Extraction
The analysis of DBS and indel signatures is a functionality new to Palimpsest 2.0, and serves as
an alternative tool to those provided by Alexandrov et al. (2018). The de novo and COSMIC
extractions are performed in exactly the same way as they are for SBS signatures. Excluding
the palimpsest_input() function, all other Palimpsest functions will deduce which mutation
type you are working with from the input you provide. See the “Palimpsest_test_script.R”
demo script for examples usage of the package with these types. Example DBS and indel de
novo extractions:
------------------------------------------------------------------

> DBS_denovo_sigs <- NMF_Extraction(input_matrices = DBS_input,

range_of_sigs = 1:10, nrun = 10,

resdir = resdir)

> ID_denovo_sigs <- NMF_Extraction(input_matrices = ID_input,

range_of_sigs = 1:10, nrun = 10,

resdir = resdir)

------------------------------------------------------------------
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Figure 6: Examples of (A) DBS and (B) indel signatures extracted de novo by Palimpsest,
displayed according to the 78 and 83 mutation categories respectively.

5.5 Estimating the exposures of mutational signatures
After extracting de novo or known mutational signatures, Palimpsest estimates the contribution
of each signature to each individual tumour genome using the deconvolution_fit() function.
Other graphical representations are also generated at this step (Fig. 4) and plotted in the
resdir, such as the distribution of mutations across the mutation categories and a comparison
of the transcription strand bias. The colours of each new signature in these graphical outputs
can be generated automatically using the signature_colour_generator() function.
------------------------------------------------------------------

> # Define signature colours for plotting

> SBS_col <- signature_colour_generator(rownames(SBS_denovo_sigs))

>

> # Calculate and plot the exposure of the signatures across the series

> SBS_signatures_exp = deconvolution_fit(input_matrices = SBS_input,

input_signatures = SBS_denovo_sigs,

signature_colours = SBS_col,

resdir = resdir)

------------------------------------------------------------------
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Figure 4: Fitting COSMIC mutational signatures into a tumour profile (CHC018T). The
barplots indicate the distribution of mutations according to the 96 SBS mutation categories
(A), distinguishing whether or not mutations occurring on the transcribed and non-transcribed
strands (B). The pie chart indicates the contribution of the COSMIC signatures identified in
the the mutation catalogue of the tumour by NMF (C).

The deconvolution_exposure() function depicts the contribution of the signatures to each
sample across the series (Fig. 5). Due to its high number of mutations, the hyper-mutated
sample “CHC892T” has been removed from this example using the rm_samples parameter to
aid the comparison of the numbers of mutations in the other samples.
------------------------------------------------------------------

> deconvolution_exposure(signature_colours = SBS_col,

signature_contribution = SBS_signatures_exp,

rm_samples = c("CHC892T"))

------------------------------------------------------------------
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Figure 5: The contribution of the 10 COSMIC SBS signatures identified in liver cancer in
the example dataset. The number (top) and proportion (bottom) of mutations attributed to
each signature in each tumour is colour coded by signature.

5.6 Assigning the most likely signature at the origin of each mu-
tation
Deciphering which signature gave rise to each mutation in a sample helps to elucidate the
mechanism at the origin of the mutation, which is particularly useful for driver mutations. We
developed a statistical framework to estimate the probability of each mutation being due to
each process, considering the mutation category and the contribution of each signature to the
corresponding tumour genome (Letouzé et al., 2017). The signature_origins() function
implements this method to annotate each line of the VCF with these probabilities and the
most probable signature.

Please see the “Palimspsest_test_script.R” for a step-by-step example of the usage of this
functionality, where this function is employed to study the signatures behind driver gene events
in the example dataset.
------------------------------------------------------------------

> vcf <- signature_origins(input = vcf, Type = "SBS",

input_signatures = SBS_liver_sigs,

signature_contribution = SBS_signatures_exp)

------------------------------------------------------------------
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We can then estimate the cumulative contribution of signatures to each driver gene in the
cohort, and identify processes preferentially associated with mutations in specific driver
genes (Fig. 6). In this example, CTNNB1 mutations are preferentially associated with the
age-related SBS5.

Figure 6: Association between mutational signatures and driver events in the 44 liver tumours.
(A) The cumulative probabilities of driver gene mutations being due to each mutational
process. (B) Comparison of the probability of each mutation being caused by SBS5 in
CTNNB1 mutations and other coding mutations, demonstrating that CTNNB1 mutations are
preferentially related to SBS5.

13



Introduction to Palimpsest

6 Clonality Analysis
Palimpsest provides functions to classify mutations as early clonal or late subclonal, and to
monitor the evolution of mutational signatures along tumourigenesis in each tumour.

6.1 Copy number alterations and Cancer cell fraction (CCF)
First, the function cnaCCF_annot() allows you to calculate the cancer cell fraction (CCF) of
each mutation, which is the proportion of tumour cells harbouring each mutation. This is
done by adjusting the variant allele fraction (VAF) for the tumour purity (provided in the
annotation file) and the absolute copy-number at each locus (provided in the CNA file). The
95% confidence interval of the CCF is also calculated, and mutations are classified as subclonal
if the upper boundary of the 95% confidence interval is under a defined threshold (here, 0.95).
The detailed formulas for CCF estimation are described by Letouzé et al. (2017).
------------------------------------------------------------------

> vcf_cna <- cnaCCF_annot(vcf = vcf, annot_data = annot,

cna_data = cna_data, CCF_boundary = 0.95)

------------------------------------------------------------------

This function adds several columns to the vcf file, including tumour purity, coverage log ratio
(LogR), total number of copies at the locus (ntot), number of major (Nmaj) and minor (Nmin)
alleles, cancer cell fraction (CCF) and confidence interval boundaries (CCF.min, CCF.max)
and the assigned clonality status.

6.2 Clonality plots
The cnaCCF_plots() function visualises (Fig. 7) the clonality annotations deduced in the
previous section:
------------------------------------------------------------------

> cnaCCF_plots(vcf= vcf_cna, resdir = resdir)

------------------------------------------------------------------

14
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Figure 7: Genome-wide distribution of variant allele fractions (VAF) and cancer cell fractions
(CCF) in a tumour (CHC909T). (A) The relationship between the VAF of mutations and local
copy-number. Each point represents a somatic mutation, coloured according to chromosome,
with the VAF on the x axis and coverage log-ratio between tumour and normal on the y axis.
Deletions lead to a decreased log-ratio and increased VAF. Duplications lead to an increased
log-ratio and either a decreased VAF (for mutations on the non-duplicated chromosome) or
an increased VAF (for mutations on the duplicated chromosome). Subclonal mutations are
visible as a cloud of mutations with very low VAF not explained by copy-number changes.
(B) The histograms represent the distribution of VAF and CCF across all mutations in the
tumour, with clonality status colour-coded.
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6.3 Temporal evolution of mutational signatures
Once the clonality of each mutation has been established, Palimpsest allows you to analyse
the evolution of mutational signatures between early clonal and late subclonal mutations.
First, we reperform the deconvolution the contribution of each signature to each tumour, this
time considering clonal and subclonal mutations separately.
------------------------------------------------------------------

> # Estimate the contribution of each signature to clonal and

> # subclonal mutations in each tumour

> vcf.clonal <- vcf_cna[which(vcf_cna$Clonality=="clonal"),]

> SBS_input_clonal <- palimpsest_input(vcf = vcf.clonal,Type = "SBS")

> sig_exp_clonal <- deconvolution_fit(input_matrices = SBS_input_clonal,

input_signatures = SBS_liver_sigs,

resdir = resdir,

save_signatures_exp = F)

>

> vcf.subclonal <- vcf_cna[which(vcf_cna$Clonality=="subclonal"),]

> SBS_input_subclonal <- palimpsest_input(vcf = vcf.subclonal,Type = "SBS")

> sig_exp_subclonal <- deconvolution_fit(input_matrices = SBS_input_subclonal,

input_signatures = SBS_liver_sigs,

resdir = resdir,

save_signatures_exp = F)

------------------------------------------------------------------

Then, we use the palimpsest_DissectSigs() function to generate visual representations (Fig.
8) of the 96 mutation category spectrums in early and late mutations, and to compare the
proportions of early and late mutations attributed to each signature in each tumour.
------------------------------------------------------------------

> # Generate per tumour comparisons of clonal and subclonal mutations

> palimpsest_DissectSigs(vcf=vcf_cna,

signatures_exp_clonal = signatures_exp_clonal,

signatures_exp_subclonal = signatures_exp_subclonal,

sig_cols = sig_cols,resdir=resdir)

------------------------------------------------------------------

16



Introduction to Palimpsest

Figure 8: Temporal evolution of mutational signatures in a liver tumour (CHC1754T). (A)
The 96 mutation category spectrums of clonal (top) and subclonal (bottom) mutations. (B)
The proportions of the 6 substitution types in clonal and subclonal mutations, with the p-value
above (chi-square test). (C) The proportions of clonal and subclonal mutations attributed to
each signature, with the p-value above (chi-square test).

The evolution of mutational signatures between clonal and subclonal mutations across the
series can also be conveniently visualised (Fig. 9) using the following function:
------------------------------------------------------------------

> # Generate across the series comparisons of signature assigned

to clonal and subclonal mutations

> palimpsest_clonalitySigsCompare(clonsig = signatures_exp_clonal$sig_nums,

subsig = signatures_exp_subclonal$sig_nums,

msigcol = sig_cols, resdir = resdir)

------------------------------------------------------------------
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Figure 9: Evolution of mutational signatures between early clonal and late subclonal mutations
in the example dataset. (A) The proportion of mutations attributed to each mutational
signature in the clonal and subclonal mutations of each tumour (connected with a line).
(B) The average contribution of each signature to clonal and subclonal mutations in all 44
tumours.
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6.4 Timing chromosomal gains
Several tools exist that can identify early clonal and late subclonal copy-number alterations
from Next-Gen sequencing data. Palimpsest allows to time the occurrence of chromosome
duplications in molecular time. When a chromosome is duplicated (e.g. from 2 to 3 copies),
mutations present in the duplicated chromosome copy are also duplicated and thus have an
increased VAF. In contrast, mutations harboured by the other copy, or acquired after the
duplication, are just present in one of the 3 copies and thus have a lower VAF. As a result, early
duplications have fewer duplicated mutations in comparison to late duplications. Palimpsest
uses the number of duplicated and non-duplicated mutations to estimate the timing of each
chromosome duplication (see Letouzé et al. (2017) for a more detailed methodology). A
cytoband table is required to generate graphical representations. Cytoband tables in hg19 and
hg38 formats are provided with the package.

The chrTime_annot() function calculates this complex information from the VCF and CNA
data, which is visualised by the chrTime_plot() function (Fig. 10).

------------------------------------------------------------------

> # Annotate vcf with chromomal gain timings

> chrom_dup_time <- chrTime_annot(vcf = vcf_cna, cna_data = cna_data,

cyto = cytoband_hg19)

> vcf_cna <- chrom_dup_time$vcf

> point.mut.time <- chrom_dup_time$point.mut.time

> cna_data <- chrom_dup_time$cna_data

>

> # Visualising timing plots

> chrTime_plot(vcf = vcf_cna, point.mut.time = point.mut.time,

resdir = resdir,cyto = cytoband_hg19)

------------------------------------------------------------------
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Figure 10: Chromosome duplication timing in a liver tumour (CHC2538T). The log-ratio (A)
and variant allele fraction (VAF) (B) of each somatic mutation are represented throughout the
genome, with the absolute copy-number below (C). For each duplicated chromosome region,
the colour of the points on the VAF graph distinguish duplicated (red) from non-duplicated
(blue) somatic mutations. Here, most duplications have a similar amount of duplicated/non-
duplicated mutations, indicating that they occurred late, when most mutations were already
present. In contrast, the duplication of chromosome X has a lower number of duplicated
mutations, so it must have occurred earlier. (D) The timing of chromosome duplications is
represented in SNV mutation time (0 = time when no mutations had yet been acquired, 100
= time when they had all been acquired).
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7 Structural Variants (SV) Signatures:
Palimpsest implements an adaptation of the mutational signature analysis framework to
structural variants (SVs), as initially described by Nik-Zainal et al. (2016) and modified by
Letouzé et al. (2017) and Bayard et al. (2018). SVs are first classified into 38 categories
considering the type (deletion, tandem duplication, inversion, inter-chromosomal transloca-
tion), size (<1kb, 1-10kb, 10-100kb, 100kb-1Mb, 1-10Mb, >10Mb) and clustered nature
of rearrangements. The same statistical tools as those used for other mutation types are
then applied to extract SV signatures and their contribution to each tumour. Palimpsest
also provides graphical representations of tumour SV profiles as CIRCOS plots and barplots
showing the number of events per SV category. The workflow is very similar to that of the
analysis of other mutation types:
------------------------------------------------------------------

> library(bedr); library(RCircos) # dependencies SV analysis

> SV.vcf <- preprocessInput_sv(input_data = SV_data,resdir = resdir)

> SV_input <- palimpsest_input(vcf = SV.vcf,Type = "SV")

>

> # SV de novo extraction

> SV_denovo_sigs <- NMF_Extraction(input_matrices = SV_input,

range_of_sigs = 1:10, nrun = 10,

num_of_sigs = 6, resdir = resdir)

------------------------------------------------------------------
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Figure 11: 4 rearrangement signatures identified in the example dataset. Structural rear-
rangements are classified in 38 categories considering their type (del: deletion, dup: tandem
duplication, inv: inversion, trans: interchromosomal translocation) and size, and distinguishing
clustered (left) from non-clustered events (right). The bargraphs represent the probability of
each rearrangement category in each signature, with rearrangement types indicated above
and rearrangement sizes below.

Further analyses of the exposure of the SV signatures across the tumour series (Fig. 12) are
performed in the same way as they are for other mutation types:
------------------------------------------------------------------

> # Calculate contribution of signatures in each sample:

> SVsignatures_exp <- deconvolution_fit_SV(vcf = SV.vcf,

input_data = SV_input$mut_props,

input_signatures = SV_denovo_sigs,

sig_cols = SV_cols,

resdir = resdir)

>

> # Plotting the exposures of signatures across the series:

> deconvolution_exposure(signature_contribution = SVsignatures_exp,

signature_colours = SV_cols)

>

> # Estimate the probability of each event being due to each process

> SV.vcf <- signature_origins(input = SV.vcf,Type = "SV",

signature_contribution = SVsignatures_exp,

input_signatures = SV_denovo_sigs)

------------------------------------------------------------------
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Figure 12: Fitting extracted structural variant signatures in a tumour profile. (A) The
distribution of structural variations according to the 38 categories. (B) CIRCOS plot repre-
senting the structural rearrangement profile of the tumour genome. (C) The contribution of
signatures in this sample.
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8 Natural history of tumours
The final step in a typical Palimpsest analysis is to generate a schematic representation of the
natural history of each tumour (Fig. 13). The palimpsest_plotTumorHistories() function
combines the results of the previous sections to generate tumour history plots indicating
the clonality of mutations, the contribution of mutational signatures to early clonal and late
subclonal mutations, the timing of chromosome duplications, driver gene mutations and
structural rearrangements (manually annotated by the user). Driver gene events are coloured
according to the the mutational process that most likely generated them.

Figure 13: Plots representing the natural history of two liver tumours from the example
dataset. The middle blue circle represents the last common ancestor of all tumour cells in
the sample and the dark blue circle represents the final tumour sample. In the first tumour
(aflatoxin B1-related, top), the highly active mutational signature 24 generated >20,000 clonal
mutations including TP53 and TERT promoter mutations. This signature was less active
in subclonal events, again replaced by signature 5. Deletions of ALB and AXIN1 genes also
occurred early in tumour development, and synchronous acquisition of multiple gains occurred
right before subclonal diversification of the tumour sample. The second tumour (unknown
aetiology, bottom) shows less difference between its clonal and subclonal signatures.
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