앞으로 태어날 우리 아기, 데이터로 미리 만나볼까~

장혜식 http://highthroughput.org/

[알림 1] 이 글에서 소개하는 정보와 소스코드, 방법론 등은 모두 연구 또는 학술 목적으로만 사용 가능합니다. 의료용으로 사용하실 때는 의료기관을 통해 법률에서 정하는 절차로 사용하셔야 합니다.

[알림 2] 이 노트북은 유전학은 잘 모르지만 데이터 분석에 관심이 많은 분들과, 데이터 분석은 잘 모르지만 유전학은 잘 아는 분들도 큰 사전지식 없이 읽으실 수 있게 쓰려고 노력했습니다. 그래서 정확성을 희생하고 간단한 말로 대체한 부분이 많으니 제대로 된 정의에 대해서는 논문들을 참고하시길 부탁드립니다. 사실 저도 인간유전체학을 하진 않기 때문에 정확히는 잘 모릅니다. 하핫;;

[알림 3] 이 노트북에서 사용된 시퀀싱 데이터는 테라젠바이오연구소에서 만들어주셨습니다.

NIPT (non-invasive prenatal testing)는 임신 초기에 아기의 유전형을 검사하는 가장 최근에 나온 방법이다. 이름이 비침습적이라고 진짜 아무 곳도 안 찌르고 들어가는 건 아니고, 엄마 피를 뽑아서 분석한다. 그래도, 아기는 안 건드리기 때문에 양수 검사융모막 검사처럼 문제가 생겼을 때 아기에게 해가 가지는 않는다.

엄마 피로 도대체 아기의 유전자를 어떻게 검사하나? 놀랍게도(!) 임신 10-14주 정도 되는 엄마 피에 떠다니는 DNA의 대략 5-20% 정도는 아기 DNA라고 한다. 정확하게 말하면 엄마 피에 있는 DNA 중에 백혈구 같은 세포 안에 들어있는 DNA 말고, 둥둥 밖에 떠다니는 DNA 중의 5-20% 이다. 이 아기DNA를 잘 분석하면 아기가 어떤 유전형을 가졌는지 아기를 건드리지 않고도 확인할 수 있다는 것이 NIPT의 기본 개념이다.

이론 상으로는 이런 방법으로 아기의 정말 자세한 유전형을 알아낼 수도 있지만, 엄마 DNA가 무려 90% 가까이 차지하고, 나머지 10% 가량만 아기 DNA라서 현실적으론 어렵다. 아기 DNA에 대한 커버리지만 충족시키는데도 기본적인 전체 유전체 시퀀싱(WGS)보다 10배 이상 드는데, 게다가 엄마DNA와 섞여있다보니 어느게 누구 것인지 통계적으로 확실히 구분할 수 있는 수준까지 가자면 일반적인 WGS의 수 백배가 필요하다. 다른 것 다 빼고 시퀀싱 시약 비용만 억대가 넘어간다.

그래서 지금 상용화되어 있는 NIPT에서는 다른 것은 모두 포기하고 염색체 개수가 이상한 이수성(aneuploidy)만 검사한다. 이수성으론 가장 유명한 것이 21번 염색체가 2개가 아니라 3개가 들어가는 3염색체성(trisomy 21)인데, 이 문제가 생기면 거의 대부분 다운 증후군이 나타난다. Trisomy 21은 생각보다 자주 발생하는 현상이라 완전 남 얘기가 아니다. 40대 초반 산모에서는 1%까지 빈도가 올라간다.

NIPT로 aneuploidy는 어떻게 검사할까? 현재 업계에서 쓰는 방법에선 0.1-0.5X 정도의 커버리지로 전체 유전체를 임의로 찔끔찔끔 읽어낸다. 즉, 엄마 피에 돌아다니는 DNA 조각 중에 아무거나 골라서 그게 뭔지 A/C/G/T가 연속되는 문자열로 읽어내는데(sequencing), 이걸 이미 알고 있는 사람 DNA 전체 문자열(서열)에 딱 맞는 부분을 찾아서 배열했을 때 대충 10%(0.1X)에서 50%(0.5X)정도 덮일 정도로 살짝 읽어내는 것이다. 많이 읽을 수록 커버리지가 올라가고 데이터도 더 좋아지지만, 돈이 많이 든다.

커버리지가 워낙 낮다보니 뭐 다른 건 분석할 수 있는 게 거의 없고, 사람 DNA 전체에서 일정 간격으로 자른 구간에서 DNA가 몇 번 읽혔는지 세서 그 숫자를 잘 비교하는 수 밖에 없다. 아기 DNA가 10%, 엄마 DNA가 90% 인 샘플이라면, 아기 DNA가 정상적인 염색체에 비해 trisomy가 있는 염색체는 5% 정도 더 읽히게 된다. 염색체가 1벌만 들어가는 monosomy가 발생했다면 5% 적게 읽힌다.

밤톨이의 등장

원래 넷을 낳겠다는 아내의 원대한 계획에 발 맞춰 얼마 전 둘째가 생겼다. 장모님이 밤이 후두둑 떨어지는 걸 받는 꿈을 꿨다고 해서 태명이 어쩌다가 밤톨이가 됐다. 원래 병원을 별로 좋아하지 않는 아내지만, 집 앞에 있는 병원의 시스템이 특별히 ESC를 누르지 않으면 저절로 OK가 계속 눌리는 프로그램처럼 딱히 얘기하지 않아도 자꾸 검사를 하게 돼 있어서 초기 검사를 꽤 했다. 12주엔 목둘레 투명대 검사(nuchal scan)를 했는데 한참을 재더니 재는 각도에 따라서 3.0mm이 넘기도 하고 아무리 좁게 잡아도 2.7mm은 항상 넘는다고 했다. 이 두께로 나오면 여러가지 염색체 이상이 발생했거나, 앞으로 신경관/심장 발달에 문제가 있을 가능성이 높다고 양수검사나 융모막검사를 하자고 했다.

그런데 이 검사들은 침습적 검사라서 실패하면 유산 가능성이 있고, 그 가능성이 1%를 넘기도 한다. 너무 위험한 검사라서 안 그래도 하루 종일 걱정을 하는 아내가 더욱 걱정을 하기 시작했다. 아내는 며칠동안 하루 종일 목둘레 검사 결과가 안 좋았지만 정상적으로 출산한 산모들과 양수검사를 하다가 사고가 난 엄마들의 인터넷 글들을 검색해서 읽었다. 정말 끝도 없이 나왔다. -O-; 여러모로 알아보다 기저율이 그렇게 높지 않은 나이이니까 문제가 없을 가능성이 훨씬 높다고 생각하고, 위험을 무릅쓸 필요는 없겠다 싶어서 그냥 추가 검사는 하지 않고 이전 검사 결과는 그냥 무시하기로 했다.

그러던 중에, 테라젠에서 NIPT검사에 관련된 논문을 냈다는 소식을 들었다. 예전에 같이 연구했던 친구들이 요즘 회사에서 NIPT사업화 관련해서 연구를 많이 하고 있다는 얘기도 듣고, 가장 활발하게 시퀀싱 사업을 하고 있는 Illumina에서도 요즘 NIPT 프로토콜과 제품을 많이 개발하고 있던게 생각났다. 그래서 NIPT 방법에 대해서 공부도 좀 해 보고, 인간 유전체 분석은 한 번도 안 해 봤기에, 그것도 어떤 방법으로 하는지 궁금해서, 테라젠의 김태형 이사님께 연락해서 아내의 NIPT 검사 데이터를 만들었다. 아직 태어나지도 않은 아이를 DNA 데이터로 먼저 만나다니! 정말 공부도 쏙쏙 되고, 뭔가 획기적인 결과를 하나 만들 수 있을 것만 같았다. ㅋㅋ

기술적으론, 아내의 피에서 뽑은 세포 밖 DNA를 Ion Proton으로 0.3X 정도 읽어서 각 염색체에 매핑되는 리드 개수를 몇 가지 보정한 후에 서로 다른 염색체들끼리의 리드 개수 비율을 구한다. 그 비율은 염색체별로 시퀀싱 효율 차이가 있기 때문에, 똑같은 DNA 준비 과정과 똑같은 시퀀싱 플랫폼을 거친 다른 임신부들의 검사 결과를 백그라운드 분포로 잡고 비교하는 방식으로 이수성의 가능성을 계산한다.

리드 매핑하고 bin에 들어가는 리드 세기

먼저 시퀀싱센터에서 받은 데이터를 매핑해서 지놈 전체를 100kbp 단위 빈으로 나눠서 리드를 센다. 빈 크기는 50k부터 300kbp까지 다양하게 많이 쓰이지만, 이번 데이터 경우에는 100kbp가 노이즈는 적으면서도 충분한 빈 개수를 확보할 수 있는 적당한 수준이었다. 사실 빈 크기가 결과에 큰 영향을 주지는 않는다.

시퀀싱 기계에서 읽은 DNA 서열을 이미 알려져 있는 사람 DNA 서열 어느 부분에 해당하는지 찾아보는 매핑 과정과 각 빈에 들어가는 리드 수를 세는 과정은 snakemake로 파이프라인을 간단하게 만드는 게 더 쉬우니까 이걸로 일단 돌린다. 매핑은 웬만한 프로그램과 비교해선 진짜 말 그대로 100배 이상 느린 것으로 유명한 GSNAP으로 한다. 보통은 BWAbowtie2 같은 것을 많이 사용하는데, 리드 개수도 얼마 안 되고 CPU와 메모리가 아주 펑펑 써도 충분할 정도로 남아 돌아서.. ㅎㅎ

우선 데이터가 있는 곳으로 뿅

In [2]:
%cd ~/tmp/niptraw
/atp/hyeshik/tmp/niptraw

아래는 Snakefile 얼개 그림과 내용. Snakefile 맨 윗쪽에서 쓰고 있는 powersnake 모듈은 여기에서 받을 수 있다.

In [31]:
!snakemake --rulegraph | dot -Tpng > rule.png

from IPython.display import Image
Image(filename='rule.png')
Out[31]:
In [32]:
!cat Snakefile
from powersnake import *

SAMPLES = ['bamtori']
BINWIDTH = 100000
GENOME_FASTA_URL = 'http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz'
GENOME_CHROMSIZES_URL = 'http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes'
SNP_TABLE_URL = 'http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/snp146.txt.gz'

rule all:
    input:
        expand('{sample}.sorted.bam{sufx}', sample=SAMPLES, sufx=['.bai', '']),
        expand('{sample}.bincov.txt', sample=SAMPLES),
        'snp146.bed.gz'

rule download_genome_reference_sequence:
    output: 'reference/hg38.fa.gz'
    shell: 'wget -O {output} {GENOME_FASTA_URL}'

rule download_genome_size_table:
    output: 'reference/hg38.chrom.sizes'
    shell: 'wget -O {output} {GENOME_CHROMSIZES_URL}'

rule build_gsnap_index:
    input: 'reference/hg38.fa.gz'
    output: 'reference/hg38/hg38.genomecomp'
    shell: 'gmap_build --gunzip --circular=chrM,chrMT  \
                -D reference -d hg38 {input}'

rule align_to_genome:
    input: ref='reference/hg38/hg38.genomecomp', fastq='{sample}.fastq.gz'
    output: temp('{sample}.bam')
    threads: 32
    shell: 'gsnap -D reference -d hg38 -m 0.05 -t {threads} -A sam -B4 \
                --gunzip {input.fastq} | \
            samtools view -b -q 3 -o {output} -'

rule sort_alignments:
    input: '{sample}.bam'
    output: '{sample}.sorted.bam'
    threads: 32
    shell: 'samtools sort [email protected] {threads} -o {output} {input}'

rule index_alignments:
    input: '{sample}.bam'
    output: '{sample}.bam.bai'
    shell: 'samtools index {input}'

rule make_depth_table:
    input: '{sample}.sorted.bam'
    output: '{sample}.bincov.txt'
    shell: 'bedtools makewindows -g reference/hg38.chrom.sizes -w {BINWIDTH} | \
            bedtools coverage -g reference/hg38.chrom.sizes -b {input} -a - \
                -nonamecheck > {output}'

rule download_snp_table:
    output: temp('snp146.txt.gz')
    shell: 'wget -O {output} {SNP_TABLE_URL}'

rule convert_snp_to_bed:
    input: 'snp146.txt.gz'
    output: 'snp146.bed.gz'
    shell: 'zcat {input} | cut -f2-7 | gzip -c - > {output}'

# vim: syntax=snakemake

레퍼런스를 준비해서 매핑하고 빈에 들어간 리드를 센다.

In [38]:
!snakemake -j -- 2>&1 > niptrun.log

리드 개수 데이터 훑어보고 전처리하기

작업 준비가 모두 끝났으니, 이상한 것이 없는지 한 번 살펴보고 쓰기 좋게 손질을 좀 해 둔다.

우선 테이블을 불러들인다. bedtools coverage에서 나오는 포맷이다.

In [33]:
coverage = pd.read_table('bamtori.bincov.txt',
                         names=['chrom', 'start', 'end', 'count', 'nzpos', 'length', 'nzratio'])

염색체 번호 순서대로 정렬할 수 있게 키를 만들어서 정렬한다. 크기가 균일하지 않은 맨 마지막 빈들은 제거한다. Y 염색체도 온전한 빈이 550개가 넘게 나오기 때문에 굳이 궁상맞게 따로 처리할 필요는 없다. 물리적으로 실재하는 염색체 말고 가상의 염색체들(alternative chromosome이나 unplaced scaffolds 등)은 제대로 하자면 복잡하니까 미리 제거한다.

In [35]:
chrom_human_order = lambda x: 'chr{:03d}'.format(int(x[3:])) if x[3:].isdigit() else x

binsize = coverage['length'].value_counts().index[0]

covs = coverage[(coverage['length'] == binsize) & (coverage['chrom'].apply(len) <= 6)].copy()
covs['chrom_sortkey'] = covs['chrom'].apply(chrom_human_order)
covs = covs.sort_values(by=['chrom_sortkey', 'start']).reset_index(drop=True)
covs.head()
Out[35]:
chrom start end count nzpos length nzratio chrom_sortkey
0 chr1 0 100000 175 18882 100000 0.18882 chr001
1 chr1 100000 200000 87 9354 100000 0.09354 chr001
2 chr1 200000 300000 59 6184 100000 0.06184 chr001
3 chr1 300000 400000 34 4553 100000 0.04553 chr001
4 chr1 400000 500000 41 5205 100000 0.05205 chr001

새 컬럼 chrom_sortkeychrom으로 문자열 정렬하면 보통 생각하는 숫자를 기준으로 한 염색체 순서를 맞추기가 어려워서 따로 0을 덧붙여서 만들었다.

컬럼 count에 각 빈에 들어가는 리드 개수가 들어 있다. nzposnzratio는 이번엔 특별히 쓸 일은 없다.

이런 저런 개인적으로 자주 쓰는 라이브러리들을 쓰기 위해 패스를 추가한다. tailseeker 패키지는 GitHub 저장소에서 받을 수 있다.

In [37]:
import sys
sys.path.append('/atp/hyeshik/p/tailseeker')
import readline
from tailseeker import plotutils, stats
from matplotlib import style
style.use('ggplot-hs') # ggplot-hs 없으면 ggplot으로 바꾸세요

matplotlib 스타일 ggplot-hs는 내장 스타일인 ggplot에서 레이블 글꼴 크기, 색깔만 조금 바꾼 것이다. readlineconda와 시스템 기본 libreadline이 버전이 다르다보니 rpy2 모듈을 부를 때 R과 Python이 서로 다른 libreadline을 부르려고 해서 어쩔 수 없이 미리 readline을 불러야만 rpy2를 쓸 수 있게 돼서 우선 이렇게 쓰고 있다.; 다음 업그레이드할 때는 고쳐야겠다.

일단 read count가 대충 어떤 분포로 나오는지 살펴보자. 요즘 생물학에선 바이올린 플랏이 대유행이다. 유행을 좇아 본다.

In [41]:
plt.figure(figsize=(9, 3))
vp = plt.violinplot([np.log2(bins['count'] + 1) for chrom, bins in covs.groupby('chrom')],
                    showextrema=False, showmedians=True, widths=0.8)
plt.setp(vp['bodies'], facecolor='k', alpha=.65)
plt.setp(vp['cmedians'], lw=2)

# chromosome 번호로 X 틱 레이블을 단다.
chromosomes = covs['chrom'].unique()
plt.xticks(np.arange(1, len(chromosomes) + 1),
           [c[3:] for c in chromosomes])

plt.xlabel('chromosome')
plt.ylabel('log2 read count/bin')
Out[41]:
<matplotlib.text.Text at 0x7f717c7155c0>

특별한 처리 없이도 대충 7.3 근처에서 모인다. 그런데! Y염색체에서 대충 중간값이 4.2 정도 되는 한 무리가 나온다. 이 수치를 다른 상염색체와 비교하면 대략 Y 염색체의 비율이 $2^{4.2-7.3}$ 쯤 된다고 할 수 있다. 즉, 11.7% 쯤 되는데, Y염색체는 엄마 DNA에는 없으므로 전적으로 아기 DNA라고 할 수 있다. 상염색체 기준으로 하면 23.4%에 육박하는 수치이므로 보통 아기 DNA가 10-20% 나오는 걸 감안하면 Y염색체가 있다는 걸 확실히 알 수 있다. IGV로 봐도 repeat 지역 여부에 관계없이 고루 퍼져있는 것을 볼 수 있었다. Y는 반복서열이 워낙 많아서 매핑이 어렵고 centromere의 비중이 상대적으로 높기 때문에 아래에 0 근처에 깔리는 빈이 많은 것은 예상할 수 있는 결과다. 아.... 귀염둥이 딸과 노는 꿈은 물거품이.. Y_Y 그래도 아들 둘이면 같이 잘 놀테니까! ^_^

분포만 그리면 재미가 없으니까 outlier가 대충 어떻게 분포하는지 멋지게 점으로 찍어보자. 염색체들을 이어 붙여서 찍을 것이므로 다른 염색체들끼리 구분할 수 있게 무지개색을 준비한다. Y염색체는 칙칙하니까 회색으로 칠한다.

In [44]:
chroms = sorted(covs['chrom_sortkey'].unique())
chromcolors = {chrom: color for chrom, color
               in zip(chroms, plotutils.colormap_lch(len(chroms), end=360))}
chromcolors['chrY'] = '#3d3d3d'

자 이제 찍는다. 각 염색체별로 median은 보기 좋게 바이올린 플랏과 마찬가지로 줄로 긋는다. 염색체 이름은 색깔 맞춰서 중간쯤에 그리는데, 뒤로 가면 글자끼리 겹치니까 위, 아래로 번갈아 표시한다.

In [48]:
fig, ax = plt.subplots(1, 1, figsize=(10, 4))

chromnameY = 8.5
wiggle_y = .2

for i, (chrom, rows) in enumerate(covs.groupby('chrom_sortkey')):
    ax.scatter(rows.index, np.log2(rows['count']),
               edgecolor='none', s=4, alpha=0.2,
               c=chromcolors[chrom])

    center_y = np.median(np.log2(rows['count']).dropna())
    ax.plot([rows.index[0], rows.index[-1]],
            [center_y, center_y],
            c='black')
    
    center_x = np.mean(rows.index)
    ax.annotate(chrom[3:].lstrip('0'),
                (center_x, chromnameY + (wiggle_y * (i % 2) * 2 - wiggle_y)),
                color=chromcolors[chrom], ha='center')

plotutils.apply_dropped_spine(ax)

ax.set_ylabel('Reads per 100k bin (log2)')
ax.set_xlim(-100, 15800*2)
ax.set_ylim(2, 10)
Out[48]:
(2, 10)

centromere 지역에서 집중적으로 빠지거나 튀는 부분이 눈에 띈다. 뭐 크게 문제는 아니다. 특별히 상염색체들끼리는 돋보이는 차이는 없고, 19번과 22번이 다른 것들보다 좀 떨어진다. 19번은 유전자 밀도가 워낙 높아서 GC ratio도 독보적으로 높고, 그 덕에 시퀀싱이 잘 안 되는 것으로 유명한다. 자세히 보지는 않았지만 아마도 그 원인이겠지? ; 22번도 유전자 밀도가 좀 높은 편이다.

사실 이수성(aneuploidy)이 있으면 log2 스케일로 0.15 정도 위아래로 왔다갔다 할 것이다. trisomy가 있다면 22번이 아래로 내려온 정도로 위로 튀면 된다. trisomy가 가장 잘 발생하는 21번 (다운 증후군), 18번 (에드워즈 증후군), 13번 (파타우 증후군) 염색체들은 다행히도 대충 대세를 따른다. 사실 이렇게 한 데이터만 놓고서 분석해서는 정확히 알기는 힘들고, 같은 플랫폼에서 검사한 다른 사람들의 데이터가 많이 모여야 정상치의 범위를 알 수 있는데.. 일단은 데이터가 1개 밖에 없으니 이걸로 대충 보고 만족한다.

GC 비율로 보정하기

사실 웬만한 것은 상용화될 수준까지 가면 간단하지 않은 문제가 돼 버린다. NIPT를 이용한 이수성 검사에서도 다른 사람들의 데이터와 비교하는 방식으로 통계적 유의성을 구하지만, 데이터를 좀 더 균일하게 만드는 여러가지 편향 보정법이 알려져있다.

가장 대표적인 것은 GC 비율 보정인데, 간단하다보니 대부분 업체에서 이 보정은 거의 반드시 채택하고 있다. DNA를 구성하는 AT/GC 중에 염색체에서 GC가 많이 들어있는 지역은 DNA 2가닥끼리 서로 붙어있으려는 힘이 훨씬 강하다. 유전체 전체를 시퀀싱할 때는 DNA를 그냥 쓰면 너무 길어서 다루기가 힘들어서, 초음파를 쏘는 등의 방법으로 DNA를 물리적으로 갈기갈기 찢은 다음에 읽는다. (여기서 쓰는 초음파는 산부인과에서 쓰는 초음파보다 훨씬 세다. 물 속에 담그고 쓰는데도 어쩌다 들으면 귀가 멍멍하다.) 그런데 GC가 많은 지역은 서로 붙어있으려는 힘이 강하다보니 그냥 흔드는 방법으로는 훨씬 덜 찢어져서, 시퀀싱까지 살려서 가기 어렵다. 그래서 GC가 많은 지역은 수가 적게 나올 수 밖에 없다.

그럼 우리도 한 번 해 보자! 먼저 사람 유전체에서 앞에서 계속 쓰던 100kbp 구간별로 GC 비율을 구한다. 이 비율은 굳이 귀찮게 프로그램 만들지 않아도 bedtools느님이 기본제공해 주신다. 하지만 랜덤액세스를 하기 때문에 gzip 압축된 상태로는 못하니까 일단 풀고 한다.

In [73]:
!zcat reference/hg38.fa.gz > reference/hg38.fa
In [57]:
genome_nuc_comp = !bedtools makewindows -g reference/hg38.chrom.sizes -w 100000 | bedtools nuc -fi reference/hg38.fa -bed -
In [58]:
import io
nuccomp = pd.read_table(io.StringIO('\n'.join(genome_nuc_comp))).iloc[:, :5]
nuccomp.columns = ['chrom', 'start', 'end', 'pct_at', 'pct_gc']
nuccomp.head()
Out[58]:
chrom start end pct_at pct_gc
0 chr1 0 100000 0.51793 0.38207
1 chr1 100000 200000 0.54185 0.45815
2 chr1 200000 300000 0.28508 0.19460
3 chr1 300000 400000 0.27479 0.24553
4 chr1 400000 500000 0.59808 0.40192

몇 개 빈에서 AT와 GC를 합쳐도 1이 안 되는 게 있다. 베이스를 모르는 N때문에 그런데, N은 AT인지 GC인지 모르니까 그냥 얘네들은 빼고 다시 계산한다.

In [59]:
nuccomp['pct_gc'] = nuccomp['pct_gc'] / (nuccomp['pct_gc'] + nuccomp['pct_at'])
del nuccomp['pct_at']

이제 앞에서 구해뒀던 빈별 커버리지 데이터와 GC비율을 합치고, 예상했던대로 GC비율과 리드 카운트가 관계가 있는지 보자.

In [66]:
covs_with_gc = pd.merge(covs, nuccomp, left_on=['chrom', 'start', 'end'],
                        right_on=['chrom', 'start', 'end']).dropna()
covs_with_gc.plot(kind='scatter', x='pct_gc', y='count',
                  edgecolor='none', s=5, c='black')
Out[66]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f7178ebc710>

위에 엄청나게 튄 outlier들때문에 뭘 볼 수가 없다. 이게 보이더라도 너무 겹쳐서 밀도가 잘 안 보일 것 같으니, 점의 밀도를 KDE로 색깔로 같이 찍어본다.

In [68]:
from scipy.stats import gaussian_kde
gc_count_mtx = covs_with_gc[['pct_gc', 'count']].as_matrix().T
density = gaussian_kde(gc_count_mtx, bw_method=0.1)(gc_count_mtx)
In [70]:
fig, axes = plt.subplots(1, 2, figsize=(10, 4))

covs_with_gc.plot(kind='scatter', x='pct_gc', y='count', edgecolor='none', s=5,
                  c=density, vmin=0, cmap='jet', ax=axes[0])
covs_with_gc.plot(kind='scatter', x='pct_gc', y='count', edgecolor='none', s=5,
                  c=density, vmin=0, cmap='jet', ax=axes[1])
axes[1].set_ylim(0, 500)
axes[1].set_xlim(0.3, 0.65)

plt.tight_layout()

오! GC 비율이 36-37%정도 되는 빈들이 가장 잘 나오고, 거기서 더 올라가면 떨어진다. 대략 GC 60%까지 가면 리드가 40% 정도 줄어드는 것 같다. AT가 적을 때도 약간 떨어지는 듯한 모양인데, 아마도 조각이 너무 잘아져서 크기로 정제하는 부분에서 없어지지 않을까 싶다. 이제 이걸로 LOESS regression을 하는 것이 생물학에서 보통 쓰는 레퍼토리인데.. GC 비율이 35%에서 42% 쯤 되는 지역의 아랫쪽에 아웃라이어가 꽤 있어서 약간 울퉁불퉁하게 나오기가 쉬울 것 같다. 아웃라이어들이 어떤 놈들인지 찾아봐서 제거하면 좋겠지만, 주업이 아니므로 대충 그냥 마구 잘라서 바로 LOESS에 집어넣는다. 아마도 centromere, heterochromatin이거나 reference와 다른 부분 등이 아닐까 싶다.

In [118]:
from sklearn import svm

gc_count_mtx_training = gc_count_mtx[:, gc_count_mtx[1] > 90]
model = svm.OneClassSVM(nu=0.06, kernel="rbf", gamma=0.5).fit(gc_count_mtx_training.T)
isinlier = model.predict(gc_count_mtx.T) == 1

gc_count_inliers = gc_count_mtx[:, isinlier]
fit_x, fit_y = stats.loess_fit(gc_count_inliers[0], gc_count_inliers[1],
                               np.linspace(0, 1, 200), alpha=.4)

fig, axes = plt.subplots(1, 2, figsize=(10, 4))

covs_with_gc.plot(kind='scatter', x='pct_gc', y='count', edgecolor='none', s=5,
                  c=isinlier, vmin=-.1, vmax=1.1, cmap='RdBu_r', ax=axes[0])
covs_with_gc.plot(kind='scatter', x='pct_gc', y='count', edgecolor='none', s=5,
                  c=isinlier, vmin=-.1, vmax=1.1, cmap='RdBu_r', ax=axes[1])
axes[1].set_ylim(0, 500)
axes[1].set_xlim(0.3, 0.65)
axes[1].plot(fit_x, fit_y, c='magenta', lw=3)
axes[0].plot(fit_x, fit_y, c='magenta', lw=3)

plt.tight_layout()

빨간색이 one class SVM으로 잡은 인라이어. 아래에 깔리는 아웃라이어들은 모델 파라미터에 넣어서 없애려니 금방 안 돼서 그냥 입력값을 미리 잘라서 넣어버렸다 -ㅇ-; 가운데 심지지역의 모서리 부분은 어차피 밀도가 중간에 비해서 많이 낮은 편이라 큰 영향은 안 주리라 보고 그냥 이대로 간다. 하하하하. =3 마젠타색 선이 LOESS 중심선인데, 대충 모양에 맞게 나왔다.

이제 원래 데이터를 LOESS 중심선에 맞춰서 끌어올린 다음에 원래 데이터와 보정한 데이터를 비교해 본다. log가 다루기 편하니, 이제 중심선에 비교해서 얼마나 enrich되었는지 log로 계산해서 쓴다.

In [125]:
gc_inliers_center = np.vstack(stats.loess_fit(gc_count_inliers[0], gc_count_inliers[1],
                                              gc_count_inliers[0], alpha=.4))

gc_logenr = gc_count_inliers.copy()
gc_logenr[1] = np.log2(gc_count_inliers[1] / gc_inliers_center[1])

orig_density = gaussian_kde(gc_count_inliers, bw_method=0.1)(gc_count_inliers)
adj_density = gaussian_kde(gc_logenr, bw_method=0.1)(gc_logenr)
In [129]:
fig, axes = plt.subplots(1, 2, figsize=(10, 4))

axes[0].scatter(gc_count_inliers[0], gc_count_inliers[1], c=orig_density, edgecolor='none', s=5)
axes[0].set_xlabel('pct_gc')
axes[0].set_ylabel('mapped reads')

axes[1].scatter(gc_logenr[0], gc_logenr[1], c=adj_density, edgecolor='none', s=5)
axes[1].set_xlabel('pct_gc')
axes[1].set_ylabel('adjusted mapped reads')
axes[1].set_ylim(-1, 1)

plt.tight_layout()