Name Notebooks Description
74eff2acb29f4358984a Davidson county population.ipynb
f2da55c0e2f6d8f35a25 Simple GP.ipynb
25c6e992985d0b79d869 Normal Test.ipynb
81e9ad44765e9270c28a Non-Spatial Measles Model.ipynb
ea8bae8b6686c213920a UF Interventions Meta-analysis (PyMC 2).ipynb
1f92954c24d217083d7d Non-Spatial Measles Model (PyMC 3).ipynb
4bd7cbaa74fa62ceb6dc UF Interventions Meta-analysis.ipynb
757b5bc7d60a0d660829 Non-Spatial Measles Model.ipynb
89af4600104fa5acb403 TensorFlow Tutorial.ipynb
294a89309231816eeb6e Dataset Statistics.ipynb
19aaadb56f3ada8531d7 bayesnet.ipynb
670e777406a2f2bfb67e Norovirus prediction.ipynb
2a3cbb033dda1c54b5df Simple Measles Model (Matrix beta).ipynb
102830057075818bec2b Untitled.ipynb
08a28c8d80c45da63371 Homework 2 solution.ipynb
e1fa2133129c0e7311ce GBS rate differences.ipynb
f102691069ea9069c3c9 Simple Measles Model (PyMC 2).ipynb
57c9901728b791cce46f Simple Measles Model-theirs.ipynb
bd774ae634630901fa72 Simple Measles Model.ipynb
8de30ee6b886f500100f Homework 1 solutions.ipynb
b55d46c890f7e5f93472 Dataset Statistics.ipynb
7bb6a08c4fae71a21a2c Black non-responders.ipynb
45b9a09260969d853949 Technology Paper.ipynb
7de47184523a9d884253 Technology Paper.ipynb
97af27b8ad6445df7abd PyMC3 bug.ipynb